On the geometry of folded cuspidal edges

被引:0
|
作者
Raúl Oset Sinha
Kentaro Saji
机构
[1] Universitat de València,Departament de Matemàtiques
[2] Kobe University,Department of Mathematics
来源
Revista Matemática Complutense | 2018年 / 31卷
关键词
Cuspidal cross-cap; Folded umbrella; Cuspidal edge; Geometric invariants; Height functions; Singularities; 57R45; 53A05;
D O I
暂无
中图分类号
学科分类号
摘要
We study the geometry of cuspidal Sk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_k$$\end{document} singularities in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^3$$\end{document} obtained by folding generically a cuspidal edge. In particular we study the geometry of the cuspidal cross-cap M, i.e. the cuspidal S0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_0$$\end{document} singularity. We study geometrical invariants associated to M and show that they determine it up to order 5. We then study the flat geometry (contact with planes) of a generic cuspidal cross-cap by classifying submersions which preserve it and relate the singularities of the resulting height functions with the geometric invariants.
引用
收藏
页码:627 / 650
页数:23
相关论文
共 50 条
  • [21] Elliptic boundary value problems in domains with intersecting cuspidal edges
    Rabinovich, VS
    Tarkhanov, NN
    Schulze, BW
    DOKLADY MATHEMATICS, 2000, 62 (03) : 401 - 405
  • [22] LOCAL DIFFERENTIAL GEOMETRY OF CUSPIDAL EDGE AND SWALLOWTAIL
    Fukui, Toshizumi
    OSAKA JOURNAL OF MATHEMATICS, 2020, 57 (04) : 961 - 992
  • [23] HOMOTOPY CLASSES OF SURFACES WITH CUSPIDAL EDGES AND DOVETAILS IN 3-SPACE
    LANGEVIN, R
    LEVITT, G
    ROSENBERG, H
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1995, 47 (03): : 544 - 572
  • [24] HORO-FLAT SURFACES ALONG CUSPIDAL EDGES IN THE HYPERBOLIC SPACE
    Izumiya, Shyuichi
    Romero-Fuster, Maria Carmen
    Saji, Kentaro
    Takahashi, Masatomo
    JOURNAL OF SINGULARITIES, 2020, 22 : 40 - 58
  • [25] Disjoint Paths in Folded Hypercubes with Deleting Some Edges
    Jin, Dan
    Liu, Hongmei
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2016, 55 (03): : 100 - 108
  • [26] Folded graphene nanoribbons with single and double closed edges
    Le, Nam B.
    Woods, Lilia M.
    PHYSICAL REVIEW B, 2012, 85 (03)
  • [27] Origami - geometry of folded plate structures
    Buri, H.
    Weinand, Y.
    STRUCTURES AND ARCHITECTURE, 2010, : 691 - 698
  • [28] Geometry design method of folded structure
    Wang, Zhijin
    Khaliulin, V.I.
    Skripkin, E.
    Nanjing Hangkong Hangtian Daxue Xuebao/Journal of Nanjing University of Aeronautics and Astronautics, 2002, 34 (01):
  • [29] Geometry of Miura-folded metamaterials
    Schenk, Mark
    Guest, Simon D.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (09) : 3276 - 3281
  • [30] Fault-free Hamiltonian cycle including given edges in folded hypercubes with faulty edges
    Cheng, Dongqin
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2020, 12 (03)