On the geometry of folded cuspidal edges

被引:0
|
作者
Raúl Oset Sinha
Kentaro Saji
机构
[1] Universitat de València,Departament de Matemàtiques
[2] Kobe University,Department of Mathematics
来源
Revista Matemática Complutense | 2018年 / 31卷
关键词
Cuspidal cross-cap; Folded umbrella; Cuspidal edge; Geometric invariants; Height functions; Singularities; 57R45; 53A05;
D O I
暂无
中图分类号
学科分类号
摘要
We study the geometry of cuspidal Sk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_k$$\end{document} singularities in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^3$$\end{document} obtained by folding generically a cuspidal edge. In particular we study the geometry of the cuspidal cross-cap M, i.e. the cuspidal S0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_0$$\end{document} singularity. We study geometrical invariants associated to M and show that they determine it up to order 5. We then study the flat geometry (contact with planes) of a generic cuspidal cross-cap by classifying submersions which preserve it and relate the singularities of the resulting height functions with the geometric invariants.
引用
收藏
页码:627 / 650
页数:23
相关论文
共 50 条
  • [11] GEOMETRIC INVARIANTS OF 5/2-CUSPIDAL EDGES
    Honda, Atsufumi
    Saji, Kentaro
    KODAI MATHEMATICAL JOURNAL, 2019, 42 (03) : 496 - 525
  • [12] Cusps and cuspidal edges at fluid interfaces: Existence and application
    Krechetnikov, R.
    PHYSICAL REVIEW E, 2015, 91 (04):
  • [13] Geometry of cuspidal sextics and their dual curves
    Oka, M
    SINGULARITIES - SAPPORO 1998, 2000, 29 : 245 - 277
  • [14] Geometry on the cuspidal cubic gone.
    Ferry, FC
    AMERICAN JOURNAL OF MATHEMATICS, 1903, 25 : 269 - 300
  • [15] On Gaussian curvatures and singularities of Gauss maps of cuspidal edges
    Teramoto, Keisuke
    PORTUGALIAE MATHEMATICA, 2021, 78 (02) : 169 - 185
  • [16] GEOMETRY OF COMPLETE CUSPIDAL PLANE CUBICS
    MIRET, JM
    DESCAMPS, SX
    LECTURE NOTES IN MATHEMATICS, 1989, 1389 : 195 - 234
  • [17] DEFORMATIONS OF CUSPIDAL EDGES IN A 3-DIMENSIONAL SPACE FORM
    Saji, Kentaro
    Umehara, Masaaki
    Yamada, Kotaro
    KODAI MATHEMATICAL JOURNAL, 2024, 47 (01) : 67 - 89
  • [18] CUSPIDAL EDGES FOR ELASTIC WAVE SURFACES FOR CUBIC-CRYSTALS
    PHILIP, J
    VISWANATHAN, KS
    PRAMANA, 1977, 8 (04) : 348 - 362
  • [19] Cuspidal edges with the same first fundamental forms along a knot
    Honda, Atsufumi
    Naokawa, Kosuke
    Saji, Kentaro
    Umehara, Masaaki
    Yamada, Kotaro
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2020, 29 (07)
  • [20] CUSPIDAL GEOMETRY OF P-ADIC GROUPS
    KAZHDAN, D
    JOURNAL D ANALYSE MATHEMATIQUE, 1986, 47 : 1 - 36