On the geometry of folded cuspidal edges

被引:0
|
作者
Raúl Oset Sinha
Kentaro Saji
机构
[1] Universitat de València,Departament de Matemàtiques
[2] Kobe University,Department of Mathematics
来源
Revista Matemática Complutense | 2018年 / 31卷
关键词
Cuspidal cross-cap; Folded umbrella; Cuspidal edge; Geometric invariants; Height functions; Singularities; 57R45; 53A05;
D O I
暂无
中图分类号
学科分类号
摘要
We study the geometry of cuspidal Sk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_k$$\end{document} singularities in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^3$$\end{document} obtained by folding generically a cuspidal edge. In particular we study the geometry of the cuspidal cross-cap M, i.e. the cuspidal S0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_0$$\end{document} singularity. We study geometrical invariants associated to M and show that they determine it up to order 5. We then study the flat geometry (contact with planes) of a generic cuspidal cross-cap by classifying submersions which preserve it and relate the singularities of the resulting height functions with the geometric invariants.
引用
收藏
页码:627 / 650
页数:23
相关论文
共 50 条
  • [41] The Geometry of Slow Manifolds near a Folded Node
    Desroches, M.
    Krauskopf, B.
    Osinga, H. M.
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2008, 7 (04): : 1131 - 1162
  • [42] Auxeticity from the Folded Geometry: A Numerical Study
    Chen, Yu
    Zulifqar, Adeel
    Hu, Hong
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2020, 257 (03):
  • [43] Singularities of Flat Dual Surfaces of Cuspidal Edges in the Three-Sphere from Duality Viewpoint
    Yu, Haibo
    Chen, Liang
    Wang, Yong
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2024, 21 (03)
  • [44] Finite element analysis of composite folded plates with elastically restrained edges
    Haldar, S
    Sheikh, AH
    Sarkar, SK
    JOURNAL OF REINFORCED PLASTICS AND COMPOSITES, 1999, 18 (07) : 626 - 641
  • [45] Cycle Existence for All Edges in Folded Hypercubes under Scope Faults
    Kuo, Che-Nan
    Cheng, Yu-Huei
    MATHEMATICS, 2023, 11 (15)
  • [46] Geometry of the edges of the tracheal anastomosis: is it an important issue?
    Szanto, Zatan
    Molnar, Thomas F.
    EUROPEAN JOURNAL OF CARDIO-THORACIC SURGERY, 2006, 30 (01) : 201 - 202
  • [47] Parametric characterization of the geometry of honed cutting edges
    Yussefian, N. Z.
    Koshy, P.
    PRECISION ENGINEERING-JOURNAL OF THE INTERNATIONAL SOCIETIES FOR PRECISION ENGINEERING AND NANOTECHNOLOGY, 2013, 37 (03): : 746 - 752
  • [48] Dualities of Differential Geometric Invariants on Cuspidal Edges on Flat Fronts in the Hyperbolic Space and the de Sitter Space
    Saji, Kentaro
    Teramoto, Keisuke
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2020, 17 (02)
  • [49] Dualities of Differential Geometric Invariants on Cuspidal Edges on Flat Fronts in the Hyperbolic Space and the de Sitter Space
    Kentaro Saji
    Keisuke Teramoto
    Mediterranean Journal of Mathematics, 2020, 17
  • [50] Local Geometry and Dynamical Behavior on Folded Basic Sets
    Mihailescu, Eugen
    JOURNAL OF STATISTICAL PHYSICS, 2011, 142 (01) : 154 - 167