On the geometry of folded cuspidal edges

被引:0
|
作者
Raúl Oset Sinha
Kentaro Saji
机构
[1] Universitat de València,Departament de Matemàtiques
[2] Kobe University,Department of Mathematics
来源
Revista Matemática Complutense | 2018年 / 31卷
关键词
Cuspidal cross-cap; Folded umbrella; Cuspidal edge; Geometric invariants; Height functions; Singularities; 57R45; 53A05;
D O I
暂无
中图分类号
学科分类号
摘要
We study the geometry of cuspidal Sk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_k$$\end{document} singularities in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^3$$\end{document} obtained by folding generically a cuspidal edge. In particular we study the geometry of the cuspidal cross-cap M, i.e. the cuspidal S0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_0$$\end{document} singularity. We study geometrical invariants associated to M and show that they determine it up to order 5. We then study the flat geometry (contact with planes) of a generic cuspidal cross-cap by classifying submersions which preserve it and relate the singularities of the resulting height functions with the geometric invariants.
引用
收藏
页码:627 / 650
页数:23
相关论文
共 50 条
  • [31] DUALITY ON GENERALIZED CUSPIDAL EDGES PRESERVING SINGULAR SET IMAGES AND FIRST FUNDAMENTAL FORMS
    Honda, A.
    Naokawa, K.
    Saji, K.
    Umehara, M.
    Yamada, K.
    JOURNAL OF SINGULARITIES, 2020, 22 : 59 - 91
  • [32] Extension to cuspidal edges of wave surfaces of anisotropic solids: Treatment of near cusp behavior
    Poncelet, O
    Deschamps, M
    Every, AG
    Audoin, B
    REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION, VOLS 20A AND 20B, 2001, 557 : 51 - 58
  • [33] DETECTION OF EDGES USING LOCAL GEOMETRY
    GUALTIERI, JA
    MANOHAR, M
    VISUAL INFORMATION PROCESSING FOR TELEVISION AND TELEROBOTICS, 1989, 3053 : 109 - 119
  • [34] Odd cycles embedding on folded hypercubes with conditional faulty edges
    Cheng, Dongqin
    Hao, Rong-Xia
    Feng, Yan-Quan
    INFORMATION SCIENCES, 2014, 282 : 180 - 189
  • [35] Embedding even cycles on folded hypercubes with conditional faulty edges
    Cheng, Dongqin
    Hao, Rong-Xia
    Feng, Yan-Quan
    INFORMATION PROCESSING LETTERS, 2015, 115 (12) : 945 - 949
  • [36] THE ENUMERATIVE GEOMETRY OF PLANE CUBICS .2. NODAL AND CUSPIDAL CUBICS
    ALUFFI, P
    MATHEMATISCHE ANNALEN, 1991, 289 (04) : 543 - 572
  • [37] CREASE Synchronized Gait Through Folded Geometry
    Mesa, Olga
    Mhatre, Saurabh
    Singh, Malika
    Aukes, Dan
    ECAADE SIGRADI 2019: ARCHITECTURE IN THE AGE OF THE 4TH INDUSTRIAL REVOLUTION, VOLUME 3, 2019, : 197 - 206
  • [38] Folded geometry shape memory alloy actuators
    MacGregor, R
    Von Behrens, P
    Szilagyi, A
    EMERGING TECHNOLOGIES UPDATE, VOL II, 2002, 426 : 11 - 22
  • [39] The geometry of folded tectonic shear sense indicators
    Goscombe, B
    Trouw, R
    JOURNAL OF STRUCTURAL GEOLOGY, 1999, 21 (01) : 123 - 127
  • [40] Investigation of folded structure geometry with double curvature
    Talakov M.A.
    Russian Aeronautics, 2010, 53 (03): : 334 - 338