HORO-FLAT SURFACES ALONG CUSPIDAL EDGES IN THE HYPERBOLIC SPACE

被引:1
|
作者
Izumiya, Shyuichi [1 ]
Romero-Fuster, Maria Carmen [2 ]
Saji, Kentaro [3 ]
Takahashi, Masatomo [4 ]
机构
[1] Hokkaido Univ, Dept Math, Sapporo, Hokkaido 0600810, Japan
[2] Univ Valencia, Dept Geometria & Topol, Valencia 46100, Spain
[3] Kobe Univ, Dept Math, Nada Ku, Rokko 1-1, Kobe, Hyogo 6578501, Japan
[4] Muroran Inst Technol, Muroran, Hokkaido 0508585, Japan
来源
JOURNAL OF SINGULARITIES | 2020年 / 22卷
关键词
cuspidal edges; flat approximations; curves on surfaces; Darboux frame; horo-flat surfaces; LEGENDRIAN DUALITIES; DARBOUX IMAGES; SINGULARITIES; HYPERSURFACES; GEOMETRY; FRONTS; CURVES;
D O I
10.5427/jsing.2020.22d
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
There are two important classes of surfaces in the hyperbolic space. One of class consists of extrinsic flat surfaces, which is an analogous notion to developable surfaces in the Euclidean space. Another class consists of horo-flat surfaces, which are given by one-parameter families of horocycles. We use the Legendrian dualities between hyperbolic space, de Sitter space and the lightcone in the Lorentz-Minkowski 4-space in order to study the geometry of flat surfaces defined along the singular set of a cuspidal edge in the hyperbolic space. Such flat surfaces can be considered as flat approximations of the cuspidal edge. We investigate the geometrical properties of a cuspidal edge in terms of the special properties of its flat approximations.
引用
收藏
页码:40 / 58
页数:19
相关论文
共 50 条
  • [1] Dualities of Differential Geometric Invariants on Cuspidal Edges on Flat Fronts in the Hyperbolic Space and the de Sitter Space
    Saji, Kentaro
    Teramoto, Keisuke
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2020, 17 (02)
  • [2] Dualities of Differential Geometric Invariants on Cuspidal Edges on Flat Fronts in the Hyperbolic Space and the de Sitter Space
    Kentaro Saji
    Keisuke Teramoto
    [J]. Mediterranean Journal of Mathematics, 2020, 17
  • [3] HOMOTOPY CLASSES OF SURFACES WITH CUSPIDAL EDGES AND DOVETAILS IN 3-SPACE
    LANGEVIN, R
    LEVITT, G
    ROSENBERG, H
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1995, 47 (03): : 544 - 572
  • [4] Parallel and dual surfaces of cuspidal edges
    Teramoto, Keisuke
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2016, 44 : 52 - 62
  • [5] Horo-tight spheres in hyperbolic space
    Marcelo Buosi
    Shyuichi Izumiya
    Maria Aparecida Soares Ruas
    [J]. Geometriae Dedicata, 2011, 154 : 9 - 26
  • [6] Flat surfaces in the hyperbolic 3-space
    José A. Gálvez
    Antonio Martínez
    Francisco Milán
    [J]. Mathematische Annalen, 2000, 316 : 419 - 435
  • [7] Flat surfaces in the hyperbolic 3-space
    Gálvez, JA
    Martínez, A
    Milán, F
    [J]. MATHEMATISCHE ANNALEN, 2000, 316 (03) : 419 - 435
  • [8] Algorithms of generating cuspidal edges of developable surfaces
    Kovaleva, N., V
    Fedorova, A., V
    Pashyan, D. A.
    [J]. INTERNATIONAL CONFERENCE ON CONSTRUCTION, ARCHITECTURE AND TECHNOSPHERE SAFETY (ICCATS 2020), 2020, 962
  • [9] Horo-tight spheres in hyperbolic space
    Buosi, Marcelo
    Izumiya, Shyuichi
    Soares Ruas, Maria Aparecida
    [J]. GEOMETRIAE DEDICATA, 2011, 154 (01) : 9 - 26
  • [10] Flat surfaces in hyperbolic space as normal surfaces to a congruence of geodesics
    Roitman, Pedro
    [J]. TOHOKU MATHEMATICAL JOURNAL, 2007, 59 (01) : 21 - 37