Flat surfaces in hyperbolic space as normal surfaces to a congruence of geodesics

被引:21
|
作者
Roitman, Pedro [1 ]
机构
[1] Univ Brasilia, Dept Matemat, Brasilia, DF, Brazil
关键词
flat surfaces; caustics; Weierstrass representation;
D O I
10.2748/tmj/1176734745
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We first present an alternative derivation of a local Weierstrass representation for flat surfaces in the real hyperbolic three-space, H-3, using as a starting point an old result due to Luigi Bianchi. We then prove the following: let M subset of H-3 be a flat compact connected smooth surface with partial derivative M not equal circle divide, transversal to a foliation of H-3 by horospheres. If, along partial derivative M, M makes a constant angle with the leaves of the foliation, then M is part of an equidistant surface to a geodesic orthogonal to the foliation. We also consider the caustic surface associated with a family of parallel flat surfaces and prove that the caustic of such a family is also a flat surface (possibly with singularities). Finally, a rigidity result for flat surfaces with singularities and a geometrical application of Schwarz's reflection principle are shown.
引用
收藏
页码:21 / 37
页数:17
相关论文
共 50 条
  • [1] Flat surfaces in the hyperbolic 3-space
    José A. Gálvez
    Antonio Martínez
    Francisco Milán
    [J]. Mathematische Annalen, 2000, 316 : 419 - 435
  • [2] Flat surfaces in the hyperbolic 3-space
    Gálvez, JA
    Martínez, A
    Milán, F
    [J]. MATHEMATISCHE ANNALEN, 2000, 316 (03) : 419 - 435
  • [3] TYPICAL GEODESICS ON FLAT SURFACES
    Dankwart, Klaus
    [J]. CONFORMAL GEOMETRY AND DYNAMICS, 2011, 15 : 188 - 209
  • [4] ON AREA STATIONARY SURFACES IN THE SPACE OF ORIENTED GEODESICS OF HYPERBOLIC 3-SPACE
    Georgiou, Nikos
    [J]. MATHEMATICA SCANDINAVICA, 2012, 111 (02) : 187 - 209
  • [5] On pairs of closed geodesics on hyperbolic surfaces
    Pitt, NJE
    [J]. ANNALES DE L INSTITUT FOURIER, 1999, 49 (01) : 1 - +
  • [6] A property of closed geodesics on hyperbolic surfaces
    Neumann-Coto, Max
    Scott, Peter
    [J]. GROUPS GEOMETRY AND DYNAMICS, 2023, 17 (01) : 1 - 33
  • [7] DISCRETE FLAT SURFACES AND LINEAR WEINGARTEN SURFACES IN HYPERBOLIC 3-SPACE
    Hoffmann, T.
    Rossman, W.
    Sasaki, T.
    Yoshida, M.
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (11) : 5605 - 5644
  • [8] Horospherical flat surfaces in Hyperbolic 3-space
    Izumiya, Shyuichi
    Saji, Kentaro
    Takahashi, Masatomo
    [J]. JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2010, 62 (03) : 789 - 849
  • [9] HELICOIDAL FLAT SURFACES IN HYPERBOLIC 3-SPACE
    Martinez, Antonio
    Dos Santos, Joao Paulo
    Tenenblat, Keti
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2013, 264 (01) : 195 - 211
  • [10] SHORT CLOSED GEODESICS ON CUSPED HYPERBOLIC SURFACES
    Vo, Hanh
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2022, 318 (01) : 127 - 151