Horospherical flat surfaces in Hyperbolic 3-space

被引:48
|
作者
Izumiya, Shyuichi [1 ]
Saji, Kentaro [2 ]
Takahashi, Masatomo [3 ]
机构
[1] Hokkaido Univ, Dept Math, Sapporo, Hokkaido 0600810, Japan
[2] Gifu Univ, Fac Educ, Dept Math, Gifu 5011193, Japan
[3] Muroran Inst Technol, Muroran, Hokkaido 0508585, Japan
基金
日本学术振兴会;
关键词
hyperbolic; 3-space; horosphere; horospherical geometry; horo-flat surfaces; singularities; GAUSS MAP; SPACE; SINGULARITIES; CURVATURE; HYPERSURFACES; GEOMETRY;
D O I
10.2969/jmsj/06230789
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recently we discovered a new geometry on submanifolds in hyperbolic n-space which is called horospherical geometry. Unfortunately this geometry is not invariant under the hyperbolic motions (it is invariant under the canonical action of SO(n)), but it has quite interesting features. For example, the flatness in this geometry is a hyperbolic invariant and the total curvatures are topological invariants. In this paper, we investigate the horospherical flat surfaces (flat surfaces in the sense of horospherical geometry) in hyperbolic 3-space. Especially, we give a generic classification of singularities of such surfaces. As a consequence, we can say that such a class of surfaces has quite a rich geometric structure.
引用
收藏
页码:789 / 849
页数:61
相关论文
共 50 条
  • [1] Flat surfaces in the hyperbolic 3-space
    José A. Gálvez
    Antonio Martínez
    Francisco Milán
    [J]. Mathematische Annalen, 2000, 316 : 419 - 435
  • [2] Flat surfaces in the hyperbolic 3-space
    Gálvez, JA
    Martínez, A
    Milán, F
    [J]. MATHEMATISCHE ANNALEN, 2000, 316 (03) : 419 - 435
  • [3] HELICOIDAL FLAT SURFACES IN HYPERBOLIC 3-SPACE
    Martinez, Antonio
    Dos Santos, Joao Paulo
    Tenenblat, Keti
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2013, 264 (01) : 195 - 211
  • [4] Asymptotic behavior of flat surfaces in hyperbolic 3-space
    Kokubu, Masatoshi
    Rossman, Wayne
    Umehara, Masaaki
    Yamada, Kotaro
    [J]. JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2009, 61 (03) : 799 - 852
  • [5] Ribaucour transformations for flat surfaces in the hyperbolic 3-space
    Corro, Armando V.
    Martinez, Antonio
    Tenenblat, Keti
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 412 (02) : 720 - 743
  • [6] DISCRETE FLAT SURFACES AND LINEAR WEINGARTEN SURFACES IN HYPERBOLIC 3-SPACE
    Hoffmann, T.
    Rossman, W.
    Sasaki, T.
    Yoshida, M.
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (11) : 5605 - 5644
  • [7] Embedded isolated singularities of flat surfaces in hyperbolic 3-space
    Gálvez, JA
    Mira, P
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2005, 24 (02) : 239 - 260
  • [8] Embedded isolated singularities of flat surfaces in hyperbolic 3-space
    José A. Gálvez
    Pablo Mira
    [J]. Calculus of Variations and Partial Differential Equations, 2005, 24 : 239 - 260
  • [9] Flat surfaces in hyperbolic 3-space whose hyperbolic Gauss maps are bounded
    Martin, Francisco
    Umehara, Masaaki
    Yamada, Kotaro
    [J]. REVISTA MATEMATICA IBEROAMERICANA, 2014, 30 (01) : 309 - 316
  • [10] Flat fronts in hyperbolic 3-space
    Kokubu, M
    Umehara, M
    Yamada, K
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2004, 216 (01) : 149 - 175