The virtual element method for a minimal surface problem

被引:0
|
作者
Paola Francesca Antonietti
Silvia Bertoluzza
Daniele Prada
Marco Verani
机构
[1] Politecnico di Milano,MOX, Dipartimento di Matematica
[2] Istituto di Matematica Applicata e Tecnologie Informatiche - CNR,undefined
来源
Calcolo | 2020年 / 57卷
关键词
Virtual element method; Minimal surface problem; Quasi-linear elliptic PDEs; 65N12; 65N30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider the Virtual Element discretization of a minimal surface problem, a quasi-linear elliptic partial differential equation modeling the problem of minimizing the area of a surface subject to a prescribed boundary condition. We derive an optimal error estimate and present several numerical tests assessing the validity of the theoretical results.
引用
收藏
相关论文
共 50 条
  • [41] A Posteriori Error Estimates of Virtual Element Method for a Simplified Friction Problem
    Yanling Deng
    Fei Wang
    Huayi Wei
    Journal of Scientific Computing, 2020, 83
  • [42] Virtual element method for elliptic Neumann boundary optimal control problem
    Liu, Shuo
    Zhou, Zhaojie
    COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (04):
  • [43] A C0 virtual element method for the biharmonic eigenvalue problem
    Meng, Jian
    Mei, Liquan
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2021, 98 (09) : 1821 - 1833
  • [44] Extended virtual element method for the torsion problem of cracked prismatic beams
    Chiozzi, Andrea
    Benvenuti, Elena
    MECCANICA, 2020, 55 (04) : 637 - 648
  • [45] The Hermite-type virtual element method for second order problem
    Zhao, Jikun
    Zhou, Fengchen
    Zhang, Bei
    Dong, Xiaojing
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 172 : 70 - 77
  • [46] A posteriori error estimates for a Virtual Element Method for the Steklov eigenvalue problem
    Mora, David
    Rivera, Gonzalo
    Rodriguez, Rodolfo
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (09) : 2172 - 2190
  • [47] A Posteriori Error Estimates of Virtual Element Method for a Simplified Friction Problem
    Deng, Yanling
    Wang, Fei
    Wei, Huayi
    JOURNAL OF SCIENTIFIC COMPUTING, 2020, 83 (03)
  • [48] Extended virtual element method for the torsion problem of cracked prismatic beams
    Andrea Chiozzi
    Elena Benvenuti
    Meccanica, 2020, 55 : 637 - 648
  • [49] The virtual element method for a nonhomogeneous double obstacle problem of Kirchhoff plate
    Feng, Fang
    Huang, Jianguo
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2023, 71
  • [50] A Virtual Element Method for the Steklov Eigenvalue Problem Allowing Small Edges
    Lepe, Felipe
    Mora, David
    Rivera, Gonzalo
    Velasquez, Ivan
    JOURNAL OF SCIENTIFIC COMPUTING, 2021, 88 (02)