The virtual element method for a minimal surface problem

被引:0
|
作者
Paola Francesca Antonietti
Silvia Bertoluzza
Daniele Prada
Marco Verani
机构
[1] Politecnico di Milano,MOX, Dipartimento di Matematica
[2] Istituto di Matematica Applicata e Tecnologie Informatiche - CNR,undefined
来源
Calcolo | 2020年 / 57卷
关键词
Virtual element method; Minimal surface problem; Quasi-linear elliptic PDEs; 65N12; 65N30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider the Virtual Element discretization of a minimal surface problem, a quasi-linear elliptic partial differential equation modeling the problem of minimizing the area of a surface subject to a prescribed boundary condition. We derive an optimal error estimate and present several numerical tests assessing the validity of the theoretical results.
引用
收藏
相关论文
共 50 条
  • [31] A Posteriori Error Estimates for the Virtual Element Method for the Stokes Problem
    Wang, Gang
    Wang, Ying
    He, Yinnian
    JOURNAL OF SCIENTIFIC COMPUTING, 2020, 84 (02)
  • [32] Nonconforming virtual element method for the Schrödinger eigenvalue problem
    Adak, Dibyendu
    Manzini, Gianmarco
    Vellojin, Jesus
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2025, 182 : 213 - 235
  • [33] The virtual element method for a contact problem with wear and unilateral constraint
    Wu, Bangmin
    Wang, Fei
    Han, Weimin
    APPLIED NUMERICAL MATHEMATICS, 2024, 206 : 29 - 47
  • [34] A Posteriori Error Estimates for the Virtual Element Method for the Stokes Problem
    Gang Wang
    Ying Wang
    Yinnian He
    Journal of Scientific Computing, 2020, 84
  • [35] A nonconforming virtual element method for the Stokes problem on general meshes
    Liu, Xin
    Li, Jian
    Chen, Zhangxin
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 320 : 694 - 711
  • [36] A pressure-robust virtual element method for the Stokes problem
    Wang, Gang
    Mu, Lin
    Wang, Ying
    He, Yinnian
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 382
  • [37] A linear virtual element method for the Kirchhoff plate buckling problem
    Meng, Jian
    Mei, Liquan
    APPLIED MATHEMATICS LETTERS, 2020, 103 (103)
  • [38] A Virtual Element Method for the Elasticity Spectral Problem Allowing for Small Edges
    Amigo D.
    Lepe F.
    Rivera G.
    Journal of Scientific Computing, 2023, 97 (03)
  • [39] Virtual element method for the Helmholtz transmission eigenvalue problem of anisotropic media
    Meng, Jian
    Mei, Liquan
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2022, 32 (08): : 1493 - 1529
  • [40] A virtual element method for the Cahn-Hilliard problem in mixed form
    Liu, Xin
    Chen, Zhangxin
    APPLIED MATHEMATICS LETTERS, 2019, 87 : 115 - 124