The virtual element method for a minimal surface problem

被引:0
|
作者
Paola Francesca Antonietti
Silvia Bertoluzza
Daniele Prada
Marco Verani
机构
[1] Politecnico di Milano,MOX, Dipartimento di Matematica
[2] Istituto di Matematica Applicata e Tecnologie Informatiche - CNR,undefined
来源
Calcolo | 2020年 / 57卷
关键词
Virtual element method; Minimal surface problem; Quasi-linear elliptic PDEs; 65N12; 65N30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider the Virtual Element discretization of a minimal surface problem, a quasi-linear elliptic partial differential equation modeling the problem of minimizing the area of a surface subject to a prescribed boundary condition. We derive an optimal error estimate and present several numerical tests assessing the validity of the theoretical results.
引用
收藏
相关论文
共 50 条
  • [21] A virtual element method for the elasticity problem allowing small edges
    Amigo, Danilo
    Lepe, Felipe
    Rivera, Gonzalo
    CALCOLO, 2023, 60 (02)
  • [22] The Stabilized Nonconforming Virtual Element Method for Linear Elasticity Problem
    Zhao, Jikun
    Wang, Tianle
    Zhang, Bei
    JOURNAL OF SCIENTIFIC COMPUTING, 2022, 92 (02)
  • [23] The nonconforming virtual element method for the Darcy-Stokes problem
    Zhao, Jikun
    Zhang, Bei
    Mao, Shipeng
    Chen, Shaochun
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 370
  • [24] A virtual element method for the Laplacian eigenvalue problem in mixed form
    Meng, Jian
    Zhang, Yongchao
    Mei, Liquan
    APPLIED NUMERICAL MATHEMATICS, 2020, 156 : 1 - 13
  • [25] Correction: A posteriori virtual element method for the acoustic vibration problem
    F. Lepe
    D. Mora
    G. Rivera
    I. Velásquez
    Advances in Computational Mathematics, 2023, 49
  • [26] A MIXED VIRTUAL ELEMENT METHOD FOR THE BOUSSINESQ PROBLEM ON POLYGONAL MESHES
    Gatica, Gabriel N.
    Munar, Mauricio
    Sequeira, Filander A.
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2021, 39 (03): : 392 - 427
  • [27] A priori error analysis of virtual element method for contact problem
    Wang, Fei
    Reddy, B. Daya
    FIXED POINT THEORY AND ALGORITHMS FOR SCIENCES AND ENGINEERING, 2022, 2022 (01):
  • [28] Extended virtual element method for the Laplace problem with singularities and discontinuities
    Benvenuti, E.
    Chiozzi, A.
    Manzini, G.
    Sukumar, N.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 356 : 571 - 597
  • [29] The Stabilized Nonconforming Virtual Element Method for Linear Elasticity Problem
    Jikun Zhao
    Tianle Wang
    Bei Zhang
    Journal of Scientific Computing, 2022, 92
  • [30] Virtual element method for a frictional contact problem with normal compliance
    Wu, Bangmin
    Wang, Fei
    Han, Weimin
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2022, 107