On a Class of Gradient Almost Ricci Solitons

被引:0
|
作者
Sinem Güler
机构
[1] Istanbul Sabahattin Zaim University,Department of Industrial Engineering
关键词
Ricci soliton; Gradient Ricci soliton; Gradient ; -almost Ricci soliton; Half-conformally flat manifold; Walker manifold; Standard static spacetime metric; 53C21; 53C50; 53C25;
D O I
暂无
中图分类号
学科分类号
摘要
In this study, we provide some classifications for half-conformally flat gradient f-almost Ricci solitons, denoted by (M, g, f), in both Lorentzian and neutral signature. First, we prove that if ||∇f||\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$||\nabla f||$$\end{document} is a non-zero constant, then (M, g, f) is locally isometric to a warped product of the form I×φN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I \times _{\varphi } N$$\end{document}, where I⊂R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I \subset \mathbb {R}$$\end{document} and N is of constant sectional curvature. On the other hand, if ||∇f||=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$||\nabla f|| = 0$$\end{document}, then it is locally a Walker manifold. Then, we construct an example of 4-dimensional steady gradient f-almost Ricci solitons in neutral signature. At the end, we give more physical applications of gradient Ricci solitons endowed with the standard static spacetime metric.
引用
收藏
页码:3635 / 3650
页数:15
相关论文
共 50 条