In this study, we provide some classifications for half-conformally flat gradient f-almost Ricci solitons, denoted by (M, g, f), in both Lorentzian and neutral signature. First, we prove that if ||∇f||\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$||\nabla f||$$\end{document} is a non-zero constant, then (M, g, f) is locally isometric to a warped product of the form I×φN\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$I \times _{\varphi } N$$\end{document}, where I⊂R\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$I \subset \mathbb {R}$$\end{document} and N is of constant sectional curvature. On the other hand, if ||∇f||=0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$||\nabla f|| = 0$$\end{document}, then it is locally a Walker manifold. Then, we construct an example of 4-dimensional steady gradient f-almost Ricci solitons in neutral signature. At the end, we give more physical applications of gradient Ricci solitons endowed with the standard static spacetime metric.