Geometry of conformal η-Ricci solitons and conformal η-Ricci almost solitons on paracontact geometry

被引:38
|
作者
Li, Yanlin [2 ]
Dey, Santu [3 ]
Pahan, Sampa [4 ]
Ali, Akram [1 ]
机构
[1] King Khalid Univ, Coll Sci, Dept Math, Abha 61421, Saudi Arabia
[2] Hangzhou Normal Univ, Sch Math, Hangzhou 311121, Peoples R China
[3] Bidhan Chandra Coll, Dept Math, Asansol 713304, W Bengal, India
[4] Mrinalini Datta Mahavidyapith, Dept Math, Kolkata 700051, India
来源
OPEN MATHEMATICS | 2022年 / 20卷 / 01期
基金
中国国家自然科学基金;
关键词
conformal eta-Ricci soliton; Kenmotsu manifold; Einstein manifold; infinitesimal contact transformation; para-cosymplectic manifold; KENMOTSU; EINSTEIN; HYPERSURFACES; CONTACT; COMPACT;
D O I
10.1515/math-2022-0048
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that if an eta-Einstein para-Kenmotsu manifold admits a conformal eta-Ricci soliton then it is Einstein. Next, we proved that a para-Kenmotsu metric as a conformal eta-Ricci soliton is Einstein if its potential vector field V is infinitesimal paracontact transformation or collinear with the Reeb vector field. Furthermore, we prove that if a para-Kenmotsu manifold admits a gradient conformal eta-Ricci almost soliton and the Reeb vector field leaves the scalar curvature invariant then it is Einstein. We also construct an example of para-Kenmotsu manifold that admits conformal eta-Ricci soliton and satisfy our results. We also have studied conformal eta-Ricci soliton in three-dimensional para-cosymplectic manifolds.
引用
收藏
页码:574 / 589
页数:16
相关论文
共 50 条
  • [1] A study on conformal Ricci solitons and conformal Ricci almost solitons within the framework of almost contact geometry
    Dey, S.
    [J]. CARPATHIAN MATHEMATICAL PUBLICATIONS, 2023, 15 (01) : 31 - 42
  • [2] Ricci Almost Solitons And Gradient Ricci Almost Solitons In (k, μ)-Paracontact Geometry
    De, U. C.
    Mandal, krishanu
    [J]. BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2019, 37 (03): : 119 - 130
  • [3] Conformal Ricci soliton and almost conformal Ricci soliton in paracontact geometry
    Dey, Santu
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2023, 20 (03)
  • [4] η-*-Ricci solitons and paracontact geometry
    Sardar, Arpan
    De, Uday Chand
    Gezer, Aydin
    [J]. JOURNAL OF ANALYSIS, 2023, 31 (04): : 2861 - 2876
  • [5] Ricci Solitons and Paracontact Geometry
    Patra, Dhriti Sundar
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2019, 16 (06)
  • [6] Ricci Solitons and Paracontact Geometry
    Dhriti Sundar Patra
    [J]. Mediterranean Journal of Mathematics, 2019, 16
  • [7] Geometry of almost Ricci solitons on paracontact metric manifolds
    Ali, Akram
    Mofarreh, Fatemah
    Patra, Dhriti Sundar
    [J]. QUAESTIONES MATHEMATICAE, 2022, 45 (08) : 1167 - 1180
  • [8] Some Results on Conformal Geometry of Gradient Ricci Solitons
    J. F. Silva Filho
    [J]. Bulletin of the Brazilian Mathematical Society, New Series, 2020, 51 : 937 - 955
  • [9] Some Results on Conformal Geometry of Gradient Ricci Solitons
    Silva Filho, J. F.
    [J]. BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2020, 51 (04): : 937 - 955
  • [10] h-Almost Ricci-Yamabe Solitons in Paracontact Geometry
    De, Uday Chand
    Khan, Mohammad Nazrul Islam
    Sardar, Arpan
    [J]. MATHEMATICS, 2022, 10 (18)