Ricci Solitons and Paracontact Geometry

被引:14
|
作者
Patra, Dhriti Sundar [1 ]
机构
[1] Birla Inst Technol Mesra, Dept Math, Ranchi 835215, Bihar, India
关键词
Ricci soliton; Einstein manifold; paracontact metric manifolds; para-Sasakian manifold; (kappa; mu)-paracontact manifold; 2ND-ORDER PARALLEL TENSORS; METRIC MANIFOLDS; CONTACT;
D O I
10.1007/s00009-019-1419-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, first we prove that if a metric of a para-Sasakian manifold is a Ricci soliton, then either it is an Einstein (and V Killing) or a eta-Einstein (and V leaves phi invariant) manifold. Next, we prove that if a K-paracontact metric g is a gradient Ricci soliton, then it becomes a expanding soliton which is Einstein with constant scalar curvature. Further, we study the Ricci soliton where the potential vector field V is point wise collinear with the Reeb vector field on paracontact manifold. Finally, we consider the gradient Ricci soliton on (kappa,mu)-paracontact manifold.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] η-*-Ricci solitons and paracontact geometry
    Sardar, Arpan
    De, Uday Chand
    Gezer, Aydin
    [J]. JOURNAL OF ANALYSIS, 2023, 31 (04): : 2861 - 2876
  • [2] Ricci Solitons and Paracontact Geometry
    Dhriti Sundar Patra
    [J]. Mediterranean Journal of Mathematics, 2019, 16
  • [3] Geometry of conformal η-Ricci solitons and conformal η-Ricci almost solitons on paracontact geometry
    Li, Yanlin
    Dey, Santu
    Pahan, Sampa
    Ali, Akram
    [J]. OPEN MATHEMATICS, 2022, 20 (01): : 574 - 589
  • [4] Ricci Almost Solitons And Gradient Ricci Almost Solitons In (k, μ)-Paracontact Geometry
    De, U. C.
    Mandal, krishanu
    [J]. BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2019, 37 (03): : 119 - 130
  • [5] Geometry of almost Ricci solitons on paracontact metric manifolds
    Ali, Akram
    Mofarreh, Fatemah
    Patra, Dhriti Sundar
    [J]. QUAESTIONES MATHEMATICAE, 2022, 45 (08) : 1167 - 1180
  • [6] Ricci solitons in three-dimensional paracontact geometry
    Calvaruso, Giovanni
    Perrone, Antonella
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2015, 98 : 1 - 12
  • [7] h-Almost Ricci-Yamabe Solitons in Paracontact Geometry
    De, Uday Chand
    Khan, Mohammad Nazrul Islam
    Sardar, Arpan
    [J]. MATHEMATICS, 2022, 10 (18)
  • [8] Torse-Forming η-Ricci Solitons in Almost Paracontact η-Einstein Geometry
    Blaga, Adara M.
    Crasmareanu, Mircea
    [J]. FILOMAT, 2017, 31 (02) : 499 - 504
  • [9] Ricci Solitons and Gradient Ricci Solitons on N(k)-Paracontact Manifolds
    Chand, De Uday
    Mandal, Krishanu
    [J]. JOURNAL OF MATHEMATICAL PHYSICS ANALYSIS GEOMETRY, 2019, 15 (03) : 307 - 320
  • [10] Second order parallel tensors and Ricci solitons in -dimensional normal paracontact geometry
    Bejan, Cornelia Livia
    Crasmareanu, Mircea
    [J]. ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2014, 46 (02) : 117 - 127