On the Ricci curvature of steady gradient Ricci solitons

被引:3
|
作者
Guo, Hongxin [1 ]
机构
[1] Wenzhou Univ, Sch Math & Informat Sci, Wenzhou 325035, Zhejiang, Peoples R China
关键词
Ricci flow; Gradient Ricci soliton; Ricci curvature; GEOMETRY;
D O I
10.1016/j.jmaa.2009.09.046
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Assume (M-n, g) is a complete steady gradient Ricci soliton with positive Ricci curvature. If the scalar curvature approaches 0 towards infinity, we prove that integral(+infinity)(0) Rc((gamma) over dot(s), (gamma) over dot(s)) ds = root R(O), where O is the point where R obtains its maximum and gamma(s) is a minimal normal geodesic emanating from O. Some other results on the Ricci curvature are also obtained. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:497 / 501
页数:5
相关论文
共 50 条