On a Class of Gradient Almost Ricci Solitons

被引:0
|
作者
Sinem Güler
机构
[1] Istanbul Sabahattin Zaim University,Department of Industrial Engineering
关键词
Ricci soliton; Gradient Ricci soliton; Gradient ; -almost Ricci soliton; Half-conformally flat manifold; Walker manifold; Standard static spacetime metric; 53C21; 53C50; 53C25;
D O I
暂无
中图分类号
学科分类号
摘要
In this study, we provide some classifications for half-conformally flat gradient f-almost Ricci solitons, denoted by (M, g, f), in both Lorentzian and neutral signature. First, we prove that if ||∇f||\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$||\nabla f||$$\end{document} is a non-zero constant, then (M, g, f) is locally isometric to a warped product of the form I×φN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I \times _{\varphi } N$$\end{document}, where I⊂R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I \subset \mathbb {R}$$\end{document} and N is of constant sectional curvature. On the other hand, if ||∇f||=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$||\nabla f|| = 0$$\end{document}, then it is locally a Walker manifold. Then, we construct an example of 4-dimensional steady gradient f-almost Ricci solitons in neutral signature. At the end, we give more physical applications of gradient Ricci solitons endowed with the standard static spacetime metric.
引用
收藏
页码:3635 / 3650
页数:15
相关论文
共 50 条
  • [21] BACH-FLAT h-ALMOST GRADIENT RICCI SOLITONS
    Yun, Gabjin
    Co, Jinseok
    Hwang, Seungsu
    PACIFIC JOURNAL OF MATHEMATICS, 2017, 288 (02) : 475 - 488
  • [22] Ricci Solitons and Gradient Ricci Solitons in a Kenmotsu Manifolds
    De, Uday Chand
    Matsuyama, Yoshio
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2013, 37 (05) : 691 - 697
  • [23] Back to Almost Ricci Solitons
    Rovenski, Vladimir
    Stepanov, Sergey
    Tsyganok, Irina
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2023, 16 (01): : 208 - 214
  • [24] HOMOGENEOUS RICCI ALMOST SOLITONS
    Calvino-Louzao, Esteban
    Fernandez-Lopez, Manuel
    Garcia-Rio, Eduardo
    Vazquez-Lorenzo, Ramon
    ISRAEL JOURNAL OF MATHEMATICS, 2017, 220 (02) : 531 - 546
  • [25] A note on almost Ricci solitons
    Sharief Deshmukh
    Hana Al-Sodais
    Analysis and Mathematical Physics, 2020, 10
  • [26] A note on almost Ricci solitons
    Deshmukh, Sharief
    Al-Sodais, Hana
    ANALYSIS AND MATHEMATICAL PHYSICS, 2020, 10 (04)
  • [27] On Gradient Ricci Solitons
    Munteanu, Ovidiu
    Sesum, Natasa
    JOURNAL OF GEOMETRIC ANALYSIS, 2013, 23 (02) : 539 - 561
  • [28] On Gradient Ricci Solitons
    Ovidiu Munteanu
    Natasa Sesum
    Journal of Geometric Analysis, 2013, 23 : 539 - 561
  • [29] Homogeneous Ricci almost solitons
    Esteban Calviño-Louzao
    Manuel Fernández-López
    Eduardo García-Río
    Ramón Vázquez-Lorenzo
    Israel Journal of Mathematics, 2017, 220 : 531 - 546
  • [30] RICCI SOLITONS AND RICCI ALMOST SOLITONS ON PARA-KENMOTSU MANIFOLD
    Patra, Dhriti Sundar
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 56 (05) : 1315 - 1325