On a Class of Gradient Almost Ricci Solitons

被引:0
|
作者
Sinem Güler
机构
[1] Istanbul Sabahattin Zaim University,Department of Industrial Engineering
关键词
Ricci soliton; Gradient Ricci soliton; Gradient ; -almost Ricci soliton; Half-conformally flat manifold; Walker manifold; Standard static spacetime metric; 53C21; 53C50; 53C25;
D O I
暂无
中图分类号
学科分类号
摘要
In this study, we provide some classifications for half-conformally flat gradient f-almost Ricci solitons, denoted by (M, g, f), in both Lorentzian and neutral signature. First, we prove that if ||∇f||\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$||\nabla f||$$\end{document} is a non-zero constant, then (M, g, f) is locally isometric to a warped product of the form I×φN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I \times _{\varphi } N$$\end{document}, where I⊂R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I \subset \mathbb {R}$$\end{document} and N is of constant sectional curvature. On the other hand, if ||∇f||=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$||\nabla f|| = 0$$\end{document}, then it is locally a Walker manifold. Then, we construct an example of 4-dimensional steady gradient f-almost Ricci solitons in neutral signature. At the end, we give more physical applications of gradient Ricci solitons endowed with the standard static spacetime metric.
引用
收藏
页码:3635 / 3650
页数:15
相关论文
共 50 条
  • [41] Geometry of almost contact metrics as almost *-Ricci solitons
    Patra, Dhriti Sundar
    Mofarreh, Fatemah
    Ali, Akram
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2024, 21 (05)
  • [42] Almost η-Ricci solitons on Kenmotsu manifolds
    Patra, Dhriti Sundar
    Rovenski, Vladimir
    EUROPEAN JOURNAL OF MATHEMATICS, 2021, 7 (04) : 1753 - 1766
  • [43] ON ALMOST η-RICCI-BOURGUIGNON SOLITONS
    Traore, Moctar
    Tastan, Hakan Mete
    Aydin, Sibel Gerdan
    MISKOLC MATHEMATICAL NOTES, 2024, 25 (01) : 493 - 508
  • [44] Almost Ricci solitons isometric to spheres
    Deshmukh, Sharief
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2019, 16 (05)
  • [45] Isometries on almost Ricci–Yamabe solitons
    Mohan Khatri
    C. Zosangzuala
    Jay Prakash Singh
    Arabian Journal of Mathematics, 2023, 12 : 127 - 138
  • [46] Ricci almost solitons and contact geometry
    Ghosh, Amalendu
    ADVANCES IN GEOMETRY, 2021, 21 (02) : 169 - 178
  • [47] Ricci-like Solitons with Arbitrary Potential and Gradient Almost Ricci-like Solitons on Sasaki-like Almost Contact B-metric Manifolds
    Mancho Manev
    Results in Mathematics, 2022, 77
  • [48] Some Results on Ricci Almost Solitons
    Deshmukh, Sharief
    Alsodais, Hana
    Bin Turki, Nasser
    SYMMETRY-BASEL, 2021, 13 (03): : 1 - 10
  • [49] Ends of Gradient Ricci Solitons
    Munteanu, Ovidiu
    Wang, Jiaping
    JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (12)
  • [50] UNIQUENESS OF GRADIENT RICCI SOLITONS
    Brendle, Simon
    MATHEMATICAL RESEARCH LETTERS, 2011, 18 (03) : 531 - 538