On a Class of Gradient Almost Ricci Solitons

被引:0
|
作者
Sinem Güler
机构
[1] Istanbul Sabahattin Zaim University,Department of Industrial Engineering
关键词
Ricci soliton; Gradient Ricci soliton; Gradient ; -almost Ricci soliton; Half-conformally flat manifold; Walker manifold; Standard static spacetime metric; 53C21; 53C50; 53C25;
D O I
暂无
中图分类号
学科分类号
摘要
In this study, we provide some classifications for half-conformally flat gradient f-almost Ricci solitons, denoted by (M, g, f), in both Lorentzian and neutral signature. First, we prove that if ||∇f||\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$||\nabla f||$$\end{document} is a non-zero constant, then (M, g, f) is locally isometric to a warped product of the form I×φN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I \times _{\varphi } N$$\end{document}, where I⊂R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I \subset \mathbb {R}$$\end{document} and N is of constant sectional curvature. On the other hand, if ||∇f||=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$||\nabla f|| = 0$$\end{document}, then it is locally a Walker manifold. Then, we construct an example of 4-dimensional steady gradient f-almost Ricci solitons in neutral signature. At the end, we give more physical applications of gradient Ricci solitons endowed with the standard static spacetime metric.
引用
收藏
页码:3635 / 3650
页数:15
相关论文
共 50 条
  • [1] On a Class of Gradient Almost Ricci Solitons
    Guler, Sinem
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (05) : 3635 - 3650
  • [2] Ricci Almost Solitons And Gradient Ricci Almost Solitons In (k, μ)-Paracontact Geometry
    De, U. C.
    Mandal, krishanu
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2019, 37 (03): : 119 - 130
  • [3] *-RICCI SOLITONS AND GRADIENT ALMOST *-RICCI SOLITONS ON KENMOTSU MANIFOLDS
    Venkatesha
    Naik, Devaraja Mallesha
    Kumara, H. Aruna
    MATHEMATICA SLOVACA, 2019, 69 (06) : 1447 - 1458
  • [4] RIGIDITY OF GRADIENT ALMOST RICCI SOLITONS
    Barros, A.
    Batista, R.
    Ribeiro, E., Jr.
    ILLINOIS JOURNAL OF MATHEMATICS, 2012, 56 (04) : 1267 - 1279
  • [5] GRADIENT RICCI SOLITONS ON ALMOST KENMOTSU MANIFOLDS
    Wang, Yaning
    De, Uday Chand
    Liu, Ximin
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2015, 98 (112): : 227 - 235
  • [6] CHARACTERIZATIONS OF IMMERSED GRADIENT ALMOST RICCI SOLITONS
    Aquino, Cicero P.
    de Lima, Henrique F.
    Gomes, Jose N. V.
    PACIFIC JOURNAL OF MATHEMATICS, 2017, 288 (02) : 289 - 305
  • [7] Invariant solutions for gradient Ricci almost solitons
    Benedito Leandro
    Romildo Pina
    Tatiana Pires Fleury Bezerra
    São Paulo Journal of Mathematical Sciences, 2020, 14 : 123 - 138
  • [8] Invariant solutions for gradient Ricci almost solitons
    Leandro, Benedito
    Pina, Romildo
    Fleury Bezerra, Tatiana Pires
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2020, 14 (01): : 123 - 138
  • [9] ON A CLASS OF FINSLER GRADIENT RICCI SOLITONS
    Mo, Xiaohuan
    Zhu, Hongmei
    Zhu, Ling
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, : 1763 - 1773
  • [10] The nonexistence of gradient almost Ricci solitons warped product
    Tokura, Willian
    Adriano, Levi
    Pina, Romildo
    Barboza, Marcelo
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2022, 82