ON A CLASS OF FINSLER GRADIENT RICCI SOLITONS

被引:0
|
作者
Mo, Xiaohuan [1 ]
Zhu, Hongmei [2 ]
Zhu, Ling [1 ]
机构
[1] PEKING Univ, Sch Math Sci, KEY Lab PURE & APPLIED Math, Beijing 100871, Peoples R China
[2] HENAN NORMAL Univ, Coll MATHEMAT & INFORMAT Sci, Xinxiang 453007, Peoples R China
基金
中国国家自然科学基金;
关键词
  Finsler gradient Ricci soliton; weighted Ricci curvature; Randers measure space; Finsler Gaussian shrinking soliton; S-curvature; RANDERS METRICS;
D O I
10.1090/proc/16240
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study a class of Finsler measure spaces whose weighted Ricci curvature satisfies Ric infinity = cF2. This class contains all gradient Ricci solitons and Finsler Gaussian shrinking solitons. Thus Finsler measure spaces in this class are called Finsler gradient Ricci solitons. For a Randers measure space, we find sufficient and necessary conditions for this space to be a Finsler gradient Ricci soliton. In particular, we show that Randers-Finsler gradient Ricci solitons must have isotropic S-curvature. Finally, we give an equivalent condition for a Randers measure space to be a Finsler gradient Ricci soliton of constant S-curvature.
引用
收藏
页码:1763 / 1773
页数:11
相关论文
共 50 条