ON A CLASS OF FINSLER GRADIENT RICCI SOLITONS

被引:0
|
作者
Mo, Xiaohuan [1 ]
Zhu, Hongmei [2 ]
Zhu, Ling [1 ]
机构
[1] PEKING Univ, Sch Math Sci, KEY Lab PURE & APPLIED Math, Beijing 100871, Peoples R China
[2] HENAN NORMAL Univ, Coll MATHEMAT & INFORMAT Sci, Xinxiang 453007, Peoples R China
基金
中国国家自然科学基金;
关键词
  Finsler gradient Ricci soliton; weighted Ricci curvature; Randers measure space; Finsler Gaussian shrinking soliton; S-curvature; RANDERS METRICS;
D O I
10.1090/proc/16240
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study a class of Finsler measure spaces whose weighted Ricci curvature satisfies Ric infinity = cF2. This class contains all gradient Ricci solitons and Finsler Gaussian shrinking solitons. Thus Finsler measure spaces in this class are called Finsler gradient Ricci solitons. For a Randers measure space, we find sufficient and necessary conditions for this space to be a Finsler gradient Ricci soliton. In particular, we show that Randers-Finsler gradient Ricci solitons must have isotropic S-curvature. Finally, we give an equivalent condition for a Randers measure space to be a Finsler gradient Ricci soliton of constant S-curvature.
引用
收藏
页码:1763 / 1773
页数:11
相关论文
共 50 条
  • [41] On Gradient Solitons of the Ricci–Harmonic Flow
    Hong Xin GUO
    Robert PHILIPOWSKI
    Anton THALMAIER
    ActaMathematicaSinica, 2015, 31 (11) : 1798 - 1804
  • [42] Maximum principles and gradient Ricci solitons
    Fernandez-Lopez, Manuel
    Garcia-Rio, Eduardo
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 251 (01) : 73 - 81
  • [43] On Gradient Solitons of the Ricci–Harmonic Flow
    Hong Xin GUO
    Robert PHILIPOWSKI
    Anton THALMAIER
    Acta Mathematica Sinica,English Series, 2015, (11) : 1798 - 1804
  • [44] RIGIDITY OF GRADIENT SHRINKING RICCI SOLITONS
    Yang, Fei
    Zhang, Liangdi
    ASIAN JOURNAL OF MATHEMATICS, 2020, 24 (04) : 533 - 547
  • [45] RIGIDITY OF GRADIENT ALMOST RICCI SOLITONS
    Barros, A.
    Batista, R.
    Ribeiro, E., Jr.
    ILLINOIS JOURNAL OF MATHEMATICS, 2012, 56 (04) : 1267 - 1279
  • [46] On warped Finslerian gradient Ricci solitons
    Yazdi, Masumeh Khameforoush
    Fakhri, Yousef Alipour
    Rezaii, Morteza Mirmohammad
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2017, 91 (3-4): : 309 - 319
  • [47] ON COMPLETE GRADIENT SHRINKING RICCI SOLITONS
    Cao, Huai-Dong
    Zhou, Detang
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2010, 85 (02) : 175 - 185
  • [48] Basic properties of gradient Ricci solitons
    Chu, SC
    GEOMETRIC EVOLUTION EQUATIONS, 2005, 367 : 79 - 102
  • [49] INEQUALITIES FOR GRADIENT EINSTEIN AND RICCI SOLITONS
    Blaga, Adara-Monica
    Crasmareanu, Mircea
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2020, 35 (02): : 351 - 356
  • [50] Compactness theorems for gradient Ricci solitons
    Zhang, Xi
    JOURNAL OF GEOMETRY AND PHYSICS, 2006, 56 (12) : 2481 - 2499