Maximum principles and gradient Ricci solitons

被引:18
|
作者
Fernandez-Lopez, Manuel [1 ]
Garcia-Rio, Eduardo [1 ]
机构
[1] Univ Santiago de Compostela, Fac Math, Santiago De Compostela 15782, Spain
关键词
Gradient Ricci soliton; Omori-Yau maximum principle; Stochastically completeness; f-Laplacian;
D O I
10.1016/j.jde.2011.03.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that the Omori-Yau maximum principle holds true on complete gradient shrinking Ricci solitons both for the Laplacian and the f-Laplacian. As an application, curvature estimates and rigidity results for shrinking Ricci solitons are obtained. Furthermore, applications of maximum principles are also given in the steady and expanding situations. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:73 / 81
页数:9
相关论文
共 50 条
  • [1] Ricci Solitons and Gradient Ricci Solitons in a Kenmotsu Manifolds
    De, Uday Chand
    Matsuyama, Yoshio
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2013, 37 (05) : 691 - 697
  • [2] On Gradient Ricci Solitons
    Munteanu, Ovidiu
    Sesum, Natasa
    JOURNAL OF GEOMETRIC ANALYSIS, 2013, 23 (02) : 539 - 561
  • [3] On Gradient Ricci Solitons
    Ovidiu Munteanu
    Natasa Sesum
    Journal of Geometric Analysis, 2013, 23 : 539 - 561
  • [4] *-RICCI SOLITONS AND GRADIENT ALMOST *-RICCI SOLITONS ON KENMOTSU MANIFOLDS
    Venkatesha
    Naik, Devaraja Mallesha
    Kumara, H. Aruna
    MATHEMATICA SLOVACA, 2019, 69 (06) : 1447 - 1458
  • [5] RICCI SOLITONS AND GRADIENT RICCI SOLITONS ON NEARLY KENMOTSU MANIFOLDS
    Ayar, Gulhan
    Yildirim, Mustafa
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2019, 34 (03): : 503 - 510
  • [6] Revisiting Gradient Bach Solitons via Maximum Principles
    Cunha, Antonio W.
    de Lima, Eudes L.
    de Lima, Henrique F.
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2024, 17 (01): : 207 - 212
  • [7] On the Ricci curvature of steady gradient Ricci solitons
    Guo, Hongxin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 363 (02) : 497 - 501
  • [8] Ends of Gradient Ricci Solitons
    Munteanu, Ovidiu
    Wang, Jiaping
    JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (12)
  • [9] UNIQUENESS OF GRADIENT RICCI SOLITONS
    Brendle, Simon
    MATHEMATICAL RESEARCH LETTERS, 2011, 18 (03) : 531 - 538
  • [10] RIGIDITY OF GRADIENT RICCI SOLITONS
    Petersen, Peter
    Wylie, William
    PACIFIC JOURNAL OF MATHEMATICS, 2009, 241 (02) : 329 - 345