ON A CLASS OF FINSLER GRADIENT RICCI SOLITONS

被引:0
|
作者
Mo, Xiaohuan [1 ]
Zhu, Hongmei [2 ]
Zhu, Ling [1 ]
机构
[1] PEKING Univ, Sch Math Sci, KEY Lab PURE & APPLIED Math, Beijing 100871, Peoples R China
[2] HENAN NORMAL Univ, Coll MATHEMAT & INFORMAT Sci, Xinxiang 453007, Peoples R China
基金
中国国家自然科学基金;
关键词
  Finsler gradient Ricci soliton; weighted Ricci curvature; Randers measure space; Finsler Gaussian shrinking soliton; S-curvature; RANDERS METRICS;
D O I
10.1090/proc/16240
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study a class of Finsler measure spaces whose weighted Ricci curvature satisfies Ric infinity = cF2. This class contains all gradient Ricci solitons and Finsler Gaussian shrinking solitons. Thus Finsler measure spaces in this class are called Finsler gradient Ricci solitons. For a Randers measure space, we find sufficient and necessary conditions for this space to be a Finsler gradient Ricci soliton. In particular, we show that Randers-Finsler gradient Ricci solitons must have isotropic S-curvature. Finally, we give an equivalent condition for a Randers measure space to be a Finsler gradient Ricci soliton of constant S-curvature.
引用
收藏
页码:1763 / 1773
页数:11
相关论文
共 50 条
  • [31] NEW TOOLS IN FINSLER GEOMETRY: STRETCH AND RICCI SOLITONS
    Crasmareanu, Mircea
    MATHEMATICAL REPORTS, 2014, 16 (01): : 83 - 93
  • [32] On a class of Ricci-flat Finsler metrics in Finsler geometry
    Chen, Bin
    Shen, Zhongmin
    Zhao, Lili
    JOURNAL OF GEOMETRY AND PHYSICS, 2013, 70 : 30 - 38
  • [33] Navigation Finsler metrics on a gradient Ricci soliton
    LI Ying
    MO Xiao-huan
    WANG Xiao-yang
    Applied Mathematics:A Journal of Chinese Universities, 2024, 39 (02) : 266 - 275
  • [34] Rigidity of Finsler gradient steady Ricci soliton
    Zhu, Hongmei
    Rao, Peijuan
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2023, 62 (04)
  • [35] Rigidity of Finsler gradient steady Ricci soliton
    Hongmei Zhu
    Peijuan Rao
    Calculus of Variations and Partial Differential Equations, 2023, 62
  • [36] Navigation Finsler metrics on a gradient Ricci soliton
    Li, Ying
    Mo, Xiao-huan
    Wang, Xiao-yang
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2024, 39 (02) : 266 - 275
  • [37] η-RICCI SOLITONS AND GRADIENT RICCI SOLITONS ON δ- LORENTZIAN TRANS-SASAKIAN MANIFOLDS
    Siddiqi, Mohd Danish
    Akyol, Mehmet Akif
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2021, 36 (03): : 529 - 545
  • [38] Ricci Almost Solitons And Gradient Ricci Almost Solitons In (k, μ)-Paracontact Geometry
    De, U. C.
    Mandal, krishanu
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2019, 37 (03): : 119 - 130
  • [39] On gradient solitons of the Ricci–Harmonic flow
    Hong Xin Guo
    Robert Philipowski
    Anton Thalmaier
    Acta Mathematica Sinica, English Series, 2015, 31 : 1798 - 1804
  • [40] The Weyl tensor of gradient Ricci solitons
    Cao, Xiaodong
    Tran, Hung
    GEOMETRY & TOPOLOGY, 2016, 20 (01) : 389 - 436