NEW TOOLS IN FINSLER GEOMETRY: STRETCH AND RICCI SOLITONS

被引:0
|
作者
Crasmareanu, Mircea [1 ]
机构
[1] Alexandru Ioan Cuza Univ, Fac Math, Iasi 700506, Romania
来源
MATHEMATICAL REPORTS | 2014年 / 16卷 / 01期
关键词
Finsler (Minkowski) space stretch; reversibility; (alpha; beta)-metric; sphere theorem; Ricci soliton; Zermelo navigation problem; flag curvature; MANIFOLDS; METRICS; DILATATION; NAVIGATION; SPHERES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Firstly, the notion of stretch from Riemannian geometry is extended to Finsler spaces in relationship with the smoothness function of Ohta and the reversibility function of Rademacher. As an application, the Sphere Theorem of Rademacher is rewritten in terms of stretch for the case of Randers and Matsumoto metrics by pointed out the usual Riemannian pinching constant 1/4. Secondly, one put in evidence a strong relationship, induced by the Zermelo navigation problem, between Randers metrics of constant flag curvature and Ricci solitons.
引用
收藏
页码:83 / 93
页数:11
相关论文
共 50 条
  • [1] On compact Ricci solitons in Finsler geometry
    Ahmadi, Mohamad Yar
    Bidabad, Behroz
    COMPTES RENDUS MATHEMATIQUE, 2015, 353 (11) : 1023 - 1027
  • [2] Almost Ricci Solitons on Finsler SpacesAlmost Ricci Solitons on Finsler SpacesQ. Xia
    Qiaoling Xia
    The Journal of Geometric Analysis, 2025, 35 (1):
  • [3] Complete Ricci solitons on Finsler manifolds
    Bidabad, Behroz
    Ahmadi, Mohamad Yar
    SCIENCE CHINA-MATHEMATICS, 2018, 61 (10) : 1825 - 1832
  • [4] ON A CLASS OF FINSLER GRADIENT RICCI SOLITONS
    Mo, Xiaohuan
    Zhu, Hongmei
    Zhu, Ling
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, : 1763 - 1773
  • [5] Complete Ricci solitons on Finsler manifolds
    Behroz Bidabad
    Mohamad Yar Ahmadi
    Science China Mathematics, 2018, 61 (10) : 1825 - 1832
  • [6] Complete Ricci solitons on Finsler manifolds
    Behroz Bidabad
    Mohamad Yar Ahmadi
    Science China Mathematics, 2018, 61 : 1825 - 1832
  • [7] Geometry of Ricci Solitons
    Huai-Dong CAO (Dedicated to the memory of Shiing-Shen Cherri)
    Chinese Annals of Mathematics, 2006, (02) : 121 - 142
  • [8] Geometry of Ricci solitons
    Cao, Huai-Dong
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2006, 27 (02) : 121 - 142
  • [9] Geometry of Ricci Solitons*
    Huai-Dong Cao
    Chinese Annals of Mathematics, Series B, 2006, 27 : 121 - 142
  • [10] Geometry of conformal η-Ricci solitons and conformal η-Ricci almost solitons on paracontact geometry
    Li, Yanlin
    Dey, Santu
    Pahan, Sampa
    Ali, Akram
    OPEN MATHEMATICS, 2022, 20 (01): : 574 - 589