NEW TOOLS IN FINSLER GEOMETRY: STRETCH AND RICCI SOLITONS

被引:0
|
作者
Crasmareanu, Mircea [1 ]
机构
[1] Alexandru Ioan Cuza Univ, Fac Math, Iasi 700506, Romania
来源
MATHEMATICAL REPORTS | 2014年 / 16卷 / 01期
关键词
Finsler (Minkowski) space stretch; reversibility; (alpha; beta)-metric; sphere theorem; Ricci soliton; Zermelo navigation problem; flag curvature; MANIFOLDS; METRICS; DILATATION; NAVIGATION; SPHERES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Firstly, the notion of stretch from Riemannian geometry is extended to Finsler spaces in relationship with the smoothness function of Ohta and the reversibility function of Rademacher. As an application, the Sphere Theorem of Rademacher is rewritten in terms of stretch for the case of Randers and Matsumoto metrics by pointed out the usual Riemannian pinching constant 1/4. Secondly, one put in evidence a strong relationship, induced by the Zermelo navigation problem, between Randers metrics of constant flag curvature and Ricci solitons.
引用
收藏
页码:83 / 93
页数:11
相关论文
共 50 条
  • [31] Geometry of almost contact metrics as almost *-Ricci solitons
    Patra, Dhriti Sundar
    Mofarreh, Fatemah
    Ali, Akram
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2024, 21 (05)
  • [32] THE k-ALMOST RICCI SOLITONS AND CONTACT GEOMETRY
    Ghosh, Amalendu
    Patra, Dhriti Sundar
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 55 (01) : 161 - 174
  • [33] Some Results on Conformal Geometry of Gradient Ricci Solitons
    Silva Filho, J. F.
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2020, 51 (04): : 937 - 955
  • [34] Geometry of almost Ricci solitons on paracontact metric manifolds
    Ali, Akram
    Mofarreh, Fatemah
    Patra, Dhriti Sundar
    QUAESTIONES MATHEMATICAE, 2022, 45 (08) : 1167 - 1180
  • [35] Ricci solitons in three-dimensional paracontact geometry
    Calvaruso, Giovanni
    Perrone, Antonella
    JOURNAL OF GEOMETRY AND PHYSICS, 2015, 98 : 1 - 12
  • [36] Some Results on Conformal Geometry of Gradient Ricci Solitons
    J. F. Silva Filho
    Bulletin of the Brazilian Mathematical Society, New Series, 2020, 51 : 937 - 955
  • [37] Almost Ricci solitons and K-contact geometry
    Sharma, Ramesh
    MONATSHEFTE FUR MATHEMATIK, 2014, 175 (04): : 621 - 628
  • [38] A new quantity in Finsler geometry
    Xiaohuan Mo
    Xiaoyang Wang
    Science China Mathematics, 2024, 67 (04) : 883 - 890
  • [39] A new quantity in Finsler geometry
    Mo, Xiaohuan
    Wang, Xiaoyang
    SCIENCE CHINA-MATHEMATICS, 2024, 67 (04) : 883 - 890
  • [40] A new quantity in Finsler geometry
    Najafi, Behzad
    Tayebi, Akbar
    COMPTES RENDUS MATHEMATIQUE, 2011, 349 (1-2) : 81 - 83