Complete Ricci solitons on Finsler manifolds

被引:0
|
作者
Behroz Bidabad [1 ]
Mohamad Yar Ahmadi [1 ]
机构
[1] Faculty of Mathematics and Computer Science, Amirkabir University of Technology
关键词
quasi-Einstein; shrinking; Finsler metric; Ricci soliton; Ricci flow;
D O I
暂无
中图分类号
O186.1 [微分几何];
学科分类号
0701 ; 070101 ;
摘要
The geometric flow theory and its applications turned into one of the most intensively developing branches of modern geometry. Here, a brief introduction to Finslerian Ricci flow and their self-similar solutions known as Ricci solitons are given and some recent results are presented. They are a generalization of Einstein metrics and are previously developed by the present authors for Finsler manifolds. In the present work, it is shown that a complete shrinking Ricci soliton Finsler manifold has a finite fundamental group.
引用
收藏
页码:1825 / 1832
页数:8
相关论文
共 50 条
  • [1] Complete Ricci solitons on Finsler manifolds
    Bidabad, Behroz
    Ahmadi, Mohamad Yar
    [J]. SCIENCE CHINA-MATHEMATICS, 2018, 61 (10) : 1825 - 1832
  • [2] Complete Ricci solitons on Finsler manifolds
    Behroz Bidabad
    Mohamad Yar Ahmadi
    [J]. Science China Mathematics, 2018, 61 : 1825 - 1832
  • [3] Almost Ricci Solitons on Finsler SpacesAlmost Ricci Solitons on Finsler SpacesQ. Xia
    Qiaoling Xia
    [J]. The Journal of Geometric Analysis, 2025, 35 (1):
  • [4] Finite topological type of complete Finsler gradient shrinking Ricci solitons
    Yar Ahmadi, Mohamad
    Hedayatian, Sina
    [J]. TURKISH JOURNAL OF MATHEMATICS, 2021, 45 (06) : 2419 - 2426
  • [5] Ricci Solitons and Gradient Ricci Solitons in a Kenmotsu Manifolds
    De, Uday Chand
    Matsuyama, Yoshio
    [J]. SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2013, 37 (05) : 691 - 697
  • [6] Infinitesimal Harmonic Transformations and Ricci Solitons on Complete Riemannian Manifolds
    Stepanov, S. E.
    Tsyganok, I. I.
    [J]. RUSSIAN MATHEMATICS, 2010, 54 (03) : 84 - 87
  • [7] On compact Ricci solitons in Finsler geometry
    Ahmadi, Mohamad Yar
    Bidabad, Behroz
    [J]. COMPTES RENDUS MATHEMATIQUE, 2015, 353 (11) : 1023 - 1027
  • [8] ON A CLASS OF FINSLER GRADIENT RICCI SOLITONS
    Mo, Xiaohuan
    Zhu, Hongmei
    Zhu, Ling
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, : 1763 - 1773
  • [9] *-RICCI SOLITONS AND GRADIENT ALMOST *-RICCI SOLITONS ON KENMOTSU MANIFOLDS
    Venkatesha
    Naik, Devaraja Mallesha
    Kumara, H. Aruna
    [J]. MATHEMATICA SLOVACA, 2019, 69 (06) : 1447 - 1458
  • [10] RICCI SOLITONS AND GRADIENT RICCI SOLITONS ON NEARLY KENMOTSU MANIFOLDS
    Ayar, Gulhan
    Yildirim, Mustafa
    [J]. FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2019, 34 (03): : 503 - 510