Infinitesimal Harmonic Transformations and Ricci Solitons on Complete Riemannian Manifolds

被引:1
|
作者
Stepanov, S. E. [1 ]
Tsyganok, I. I. [2 ]
机构
[1] Financial Acad Govt Russian Federat, 49 Leningradskii Pr 49, Moscow 125993, Russia
[2] Russian Univ Cooperat, Vladimir Branch, Vladimir, Russia
关键词
Ricci solitons; infinitesimal harmonic transformations; complete Riemannian manifold;
D O I
10.3103/S1066369X10030138
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Ricci solitons were introduced by R. Hamilton as natural generalizations of Einstein metrics. A Ricci soliton on a smooth manifold M is a triple (g(0), xi, lambda), where g(0) is a complete Riemannian metric, xi a vector field, and lambda a constant such that the Ricci tensor Ric(0) of the metric g(0) satisfies the equation -2Ric(0) = L xi g(0) + 2 lambda g(0). The following statement is one of the main results of the paper. Let (g(0), xi, lambda) be a Ricci soliton such that (M, g(0)) is a complete noncompact oriented Riemannian manifold, integral(M) parallel to xi parallel to dv < infinity, and the scalar curvature s(0) of g(0) has a constant sign on M, then (M, g(0)) is an Einstein manifold.
引用
收藏
页码:84 / 87
页数:4
相关论文
共 50 条
  • [1] FROM INFINITESIMAL HARMONIC TRANSFORMATIONS TO RICCI SOLITONS
    Stepanov, Sergey E.
    Tsyganok, Irina I.
    Mikes, Josef
    [J]. MATHEMATICA BOHEMICA, 2013, 138 (01): : 25 - 36
  • [2] Ricci Solitons on Golden Riemannian Manifolds
    Savita Rani
    Ram Shankar Gupta
    [J]. Mediterranean Journal of Mathematics, 2023, 20
  • [3] Ricci Solitons on Golden Riemannian Manifolds
    Rani, Savita
    Gupta, Ram Shankar
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (03)
  • [4] Gravitational solitons and complete Ricci flat Riemannian manifolds of infinite topological type
    Khuri, Marcus
    Reiris, Martin
    Weinstein, Gilbert
    Yamada, Sumio
    [J]. PURE AND APPLIED MATHEMATICS QUARTERLY, 2024, 20 (04) : 1895 - 1921
  • [5] Complete Ricci solitons on Finsler manifolds
    Behroz Bidabad
    Mohamad Yar Ahmadi
    [J]. Science China Mathematics, 2018, 61 (10) : 1825 - 1832
  • [6] Complete Ricci solitons on Finsler manifolds
    Bidabad, Behroz
    Ahmadi, Mohamad Yar
    [J]. SCIENCE CHINA-MATHEMATICS, 2018, 61 (10) : 1825 - 1832
  • [7] Complete Ricci solitons on Finsler manifolds
    Behroz Bidabad
    Mohamad Yar Ahmadi
    [J]. Science China Mathematics, 2018, 61 : 1825 - 1832
  • [8] Three-Dimensional Riemannian Manifolds and Ricci Solitons
    Chaubey, Sudhakar K.
    De, Uday Chand
    [J]. QUAESTIONES MATHEMATICAE, 2022, 45 (05) : 765 - 778
  • [9] Harmonic transforms of complete Riemannian manifolds
    S. E. Stepanov
    I. I. Tsyganok
    [J]. Mathematical Notes, 2016, 100 : 465 - 471
  • [10] Harmonic transforms of complete Riemannian manifolds
    Stepanov, S. E.
    Tsyganok, I. I.
    [J]. MATHEMATICAL NOTES, 2016, 100 (3-4) : 465 - 471