Infinitesimal Harmonic Transformations and Ricci Solitons on Complete Riemannian Manifolds

被引:1
|
作者
Stepanov, S. E. [1 ]
Tsyganok, I. I. [2 ]
机构
[1] Financial Acad Govt Russian Federat, 49 Leningradskii Pr 49, Moscow 125993, Russia
[2] Russian Univ Cooperat, Vladimir Branch, Vladimir, Russia
关键词
Ricci solitons; infinitesimal harmonic transformations; complete Riemannian manifold;
D O I
10.3103/S1066369X10030138
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Ricci solitons were introduced by R. Hamilton as natural generalizations of Einstein metrics. A Ricci soliton on a smooth manifold M is a triple (g(0), xi, lambda), where g(0) is a complete Riemannian metric, xi a vector field, and lambda a constant such that the Ricci tensor Ric(0) of the metric g(0) satisfies the equation -2Ric(0) = L xi g(0) + 2 lambda g(0). The following statement is one of the main results of the paper. Let (g(0), xi, lambda) be a Ricci soliton such that (M, g(0)) is a complete noncompact oriented Riemannian manifold, integral(M) parallel to xi parallel to dv < infinity, and the scalar curvature s(0) of g(0) has a constant sign on M, then (M, g(0)) is an Einstein manifold.
引用
下载
收藏
页码:84 / 87
页数:4
相关论文
共 50 条
  • [11] Almost *-η-Ricci solitons on Kenmotsu pseudo-Riemannian manifolds
    Rashmi, S. V. Divya
    Venkatesha, V.
    ANALYSIS-INTERNATIONAL MATHEMATICAL JOURNAL OF ANALYSIS AND ITS APPLICATIONS, 2022, 42 (04): : 241 - 250
  • [12] Ricci solitons on Riemannian manifolds admitting certain vector field
    Naik, Devaraja Mallesha
    RICERCHE DI MATEMATICA, 2024, 73 (01) : 531 - 546
  • [13] Ricci solitons on Riemannian manifolds admitting certain vector field
    Devaraja Mallesha Naik
    Ricerche di Matematica, 2024, 73 : 531 - 546
  • [14] Riemannian 3-manifolds and Ricci-Yamabe solitons
    Haseeb, Abdul
    Chaubey, Sudhakar K.
    Khan, Meraj Ali
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2023, 20 (01)
  • [15] ON COMPLETE RIEMANNIAN-MANIFOLDS WITH POSITIVE RICCI CURVATURE
    NABONNAND, P
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1980, 291 (10): : 591 - 593
  • [16] CONFORMAL TRANSFORMATIONS IN COMPLETE PRODUCT RIEMANNIAN MANIFOLDS
    TASHIRO, Y
    MIYASHIT.K
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1967, 19 (03) : 328 - +
  • [17] ON RICCI RIEMANNIAN MANIFOLDS
    Saha, S. K.
    ANALELE STIINTIFICE ALE UNIVERSITATII AL I CUZA DIN IASI-SERIE NOUA-MATEMATICA, 2010, 56 (02): : 437 - 446
  • [18] Characterizations of Ricci–Bourguignon Almost Solitons on Pseudo-Riemannian Manifolds
    Dhriti Sundar Patra
    Akram Ali
    Fatemah Mofarreh
    Mediterranean Journal of Mathematics, 2022, 19
  • [19] Ricci-Yamabe solitons and 3-dimensional Riemannian manifolds
    De, Uday Chand
    Sardar, Arpan
    De, Krishnendu
    TURKISH JOURNAL OF MATHEMATICS, 2022, 46 (03) : 1078 - 1088
  • [20] Geometry of generalized Ricci-type solitons on a class of Riemannian manifolds
    Kumara, H. Aruna
    Naik, Devaraja Mallesha
    Venkatesha, V.
    JOURNAL OF GEOMETRY AND PHYSICS, 2022, 176