Ricci solitons on Riemannian manifolds admitting certain vector field

被引:0
|
作者
Devaraja Mallesha Naik
机构
[1] CHRIST (Deemed to be University),Department of Mathematics
来源
Ricerche di Matematica | 2024年 / 73卷
关键词
Conformal vector field; Ricci soliton; Ricci almost soliton; Gradient Ricci almost soliton; 53C25; 53C44; 53C21;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we initiate the study of impact of the existence of a unit vector ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu $$\end{document}, called a concurrent-recurrent vector field, on the geometry of a Riemannian manifold. Some examples of these vector fields are provided on Riemannian manifolds, and basic geometric properties of these vector fields are derived. Next, we characterize Ricci solitons on 3-dimensional Riemannian manifolds and gradient Ricci almost solitons on a Riemannian manifold (of dimension n) admitting a concurrent-recurrent vector field. In particular, it is proved that the Riemannian 3-manifold equipped with a concurrent-recurrent vector field is of constant negative curvature -α2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\alpha ^2$$\end{document} when its metric is a Ricci soliton. Further, it has been shown that a Riemannian manifold admitting a concurrent-recurrent vector field, whose metric is a gradient Ricci almost soliton, is Einstein.
引用
收藏
页码:531 / 546
页数:15
相关论文
共 50 条
  • [1] Ricci solitons on Riemannian manifolds admitting certain vector field
    Naik, Devaraja Mallesha
    [J]. RICERCHE DI MATEMATICA, 2024, 73 (01) : 531 - 546
  • [2] Generalized Ricci solitons on Riemannian manifolds admitting concurrent-recurrent vector field
    Devaraja Mallesha Naik
    H. Aruna Kumara
    V. Venkatesha
    [J]. The Journal of Analysis, 2022, 30 : 1023 - 1031
  • [3] Generalized Ricci solitons on Riemannian manifolds admitting concurrent-recurrent vector field
    Naik, Devaraja Mallesha
    Kumara, H. Aruna
    Venkatesha, V.
    [J]. JOURNAL OF ANALYSIS, 2022, 30 (03): : 1023 - 1031
  • [4] Ricci Solitons on Golden Riemannian Manifolds
    Savita Rani
    Ram Shankar Gupta
    [J]. Mediterranean Journal of Mathematics, 2023, 20
  • [5] Gradient Ricci solitons admitting a closed conformal Vector field
    Diogenes, R.
    Ribeiro, E., Jr.
    Silva Filho, J.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 455 (02) : 1975 - 1983
  • [6] Ricci Solitons on Golden Riemannian Manifolds
    Rani, Savita
    Gupta, Ram Shankar
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (03)
  • [7] Gradient Ricci Solitons on Spacelike Hypersurfaces of Lorentzian Manifolds Admitting a Closed Conformal Timelike Vector Field
    Alshehri, Norah
    Guediri, Mohammed
    [J]. MATHEMATICS, 2024, 12 (06)
  • [8] Characteristics of Sasakian Manifolds Admitting Almost *-Ricci Solitons
    Rovenski, Vladimir
    Patra, Dhriti Sundar
    [J]. FRACTAL AND FRACTIONAL, 2023, 7 (02)
  • [9] η-RICCI SOLITONS ON KENMOTSU MANIFOLDS ADMITTING GENERAL CONNECTION
    Biswas, Ashis
    Das, Ashoke
    Baishya, Kanak Kanti
    Bakshi, Manoj Ray
    [J]. KOREAN JOURNAL OF MATHEMATICS, 2020, 28 (04): : 803 - 817
  • [10] On Kenmotsu manifolds admitting η-Ricci-Yamabe solitons
    Yoldas, Halil Ibrahim
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2021, 18 (12)