Generalized Ricci solitons on Riemannian manifolds admitting concurrent-recurrent vector field

被引:1
|
作者
Naik, Devaraja Mallesha [1 ]
Kumara, H. Aruna [2 ]
Venkatesha, V. [2 ]
机构
[1] CHRIST Deemed Univ, Ctr Math Needs, Dept Math, Bengaluru 560029, Karnataka, India
[2] Kuvempu Univ, Dept Math, Shivamogga 577451, Karnataka, India
来源
JOURNAL OF ANALYSIS | 2022年 / 30卷 / 03期
关键词
Generalized Ricci soliton; Gradient generalized Ricci soliton; Conformal vector field; PROJECTIVE SURFACES; METRICS;
D O I
10.1007/s41478-022-00387-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (M, g) be a Riemannian manifold admitting a concurrent-recurrent vector field nu. We prove that if the metric g is a generalized Ricci soliton such that the potential field V is a conformal vector field, then M is Einstein. Next we show that if the metric of M is a gradient generalized Ricci soliton, then either of these three occurs: (i) nu((sic)) is invariant along gradient of potential function; (ii) M is Einstein; (iii) the potential vector field is pointwise collinear to concurrent-recurrent vector field nu. Finally, we investigate gradient generalized Ricci soliton on a Riemannian manifold (M, g) admitting a unit parallel vector field, and in this case we show that if g is a non-steady gradient generalized Ricci soliton, then the Ricci tensor satisfies Ric = -lambda/alpha{g similar to nu((sic)) circle times nu((sic))}, where nu((sic)) is the canonical 1-form associated to nu.
引用
收藏
页码:1023 / 1031
页数:9
相关论文
共 50 条
  • [1] Generalized Ricci solitons on Riemannian manifolds admitting concurrent-recurrent vector field
    Devaraja Mallesha Naik
    H. Aruna Kumara
    V. Venkatesha
    [J]. The Journal of Analysis, 2022, 30 : 1023 - 1031
  • [2] Ricci solitons on Riemannian manifolds admitting certain vector field
    Naik, Devaraja Mallesha
    [J]. RICERCHE DI MATEMATICA, 2024, 73 (01) : 531 - 546
  • [3] Ricci solitons on Riemannian manifolds admitting certain vector field
    Devaraja Mallesha Naik
    [J]. Ricerche di Matematica, 2024, 73 : 531 - 546
  • [4] Yamabe Solitons and t-Quasi Yamabe Gradient Solitons on Riemannian Manifolds Admitting Concurrent-Recurrent Vector Fields
    Naik, Devaraja Mallesha
    Fasihi-Ramandi, Ghodratallah
    Aruna Kumara, H.
    Venkatesha, Venkatesha
    [J]. MATHEMATICA SLOVACA, 2023, 73 (02) : 501 - 510
  • [5] Static perfect fluid spacetime on Riemannian manifolds admitting concurrent-recurrent vector field with Bach tensor
    Praveena, M. M.
    Kumara, H. Aruna
    Arjun, C. M.
    Siddesha, M. S.
    [J]. JOURNAL OF APPLIED ANALYSIS, 2024,
  • [6] Ricci Solitons on Golden Riemannian Manifolds
    Savita Rani
    Ram Shankar Gupta
    [J]. Mediterranean Journal of Mathematics, 2023, 20
  • [7] Gradient Ricci solitons admitting a closed conformal Vector field
    Diogenes, R.
    Ribeiro, E., Jr.
    Silva Filho, J.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 455 (02) : 1975 - 1983
  • [8] Ricci Solitons on Golden Riemannian Manifolds
    Rani, Savita
    Gupta, Ram Shankar
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (03)
  • [9] Geometry of generalized Ricci-type solitons on a class of Riemannian manifolds
    Kumara, H. Aruna
    Naik, Devaraja Mallesha
    Venkatesha, V.
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2022, 176
  • [10] Gradient Ricci Solitons on Spacelike Hypersurfaces of Lorentzian Manifolds Admitting a Closed Conformal Timelike Vector Field
    Alshehri, Norah
    Guediri, Mohammed
    [J]. MATHEMATICS, 2024, 12 (06)