Yamabe Solitons and t-Quasi Yamabe Gradient Solitons on Riemannian Manifolds Admitting Concurrent-Recurrent Vector Fields

被引:1
|
作者
Naik, Devaraja Mallesha [1 ]
Fasihi-Ramandi, Ghodratallah [2 ]
Aruna Kumara, H. [3 ]
Venkatesha, Venkatesha [4 ]
机构
[1] Kuvempu Univ, Dept Math, Shivamogga 577451, Karnataka, India
[2] Imam Khomeini Int Univ, Dept Pure Math, Fac Sci, Qazvin, Iran
[3] Dept Math BMS Inst Technol & Management Yelahanka, Bangalore 560064, India
[4] Kuvempu Univ, Dept Math, Shankaraghatta 577451, Karnataka, India
关键词
Yamabe soliton; tau-quasi Yamabe gradient soliton; conformal vector field;
D O I
10.1515/ms-2023-0037
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a Riemannian manifold (M,g) admitting a concurrent-recurrent vector field for which the metric g is a Yamabe soliton or a t-quasi Yamabe gradient soliton. We show that if the metric of a Riemannian three-manifold (M, g) admitting a concurrent-recurrent vector field is a Yamabe soliton, then M is of constant negative curvature -a(2). In this case, we see that the potential vector field is Killing. Next, we show that if the metric of a Riemannian manifold M admitting concurrent-recurrent vector field is a non-trivial r-quasi Yamabe gradient soliton with potential function f, then M has constant scalar curvature and is equal to -n(n - 1)a(2). Finally, an illustrative example is presented.
引用
收藏
页码:501 / 510
页数:10
相关论文
共 50 条
  • [1] Generalized Ricci solitons on Riemannian manifolds admitting concurrent-recurrent vector field
    Devaraja Mallesha Naik
    H. Aruna Kumara
    V. Venkatesha
    [J]. The Journal of Analysis, 2022, 30 : 1023 - 1031
  • [2] Generalized Ricci solitons on Riemannian manifolds admitting concurrent-recurrent vector field
    Naik, Devaraja Mallesha
    Kumara, H. Aruna
    Venkatesha, V.
    [J]. JOURNAL OF ANALYSIS, 2022, 30 (03): : 1023 - 1031
  • [3] Characterization of Almost Yamabe Solitons and Gradient Almost Yamabe Solitons with Conformal Vector Fields
    Alkhaldi, Ali H.
    Piscoran, Laurian-Ioan
    Abolarinwa, Abimbola
    Ali, Akram
    [J]. SYMMETRY-BASEL, 2021, 13 (12):
  • [4] A note on almost quasi Yamabe solitons and gradient almost quasi Yamabe solitons
    Ghosh, Sujit
    De, Uday Chand
    Yildiz, Ahmet
    [J]. HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2021, 50 (03): : 770 - 777
  • [5] Almost quasi-Yamabe solitons and gradient almost quasi-Yamabe solitons in f-kenmotsu manifolds
    Ghosh, Sujit
    De, Uday Chand
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2021, 18 (11)
  • [6] Yamabe and quasi-Yamabe solitons in paracontact metric manifolds
    De, Uday Chand
    Suh, Young Jin
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2021, 18 (12)
  • [7] On noncompact quasi Yamabe gradient solitons
    Wang, Lin Feng
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2013, 31 (03) : 337 - 348
  • [8] Generalized quasi Yamabe gradient solitons
    Neto, Benedito Leandro
    de Oliveira, Hudson Pina
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2016, 49 : 167 - 175
  • [9] ON A CLASSIFICATION OF THE QUASI YAMABE GRADIENT SOLITONS
    Huang, Guangyue
    Li, Haizhong
    [J]. METHODS AND APPLICATIONS OF ANALYSIS, 2014, 21 (03) : 379 - 390
  • [10] On Kenmotsu manifolds admitting η-Ricci-Yamabe solitons
    Yoldas, Halil Ibrahim
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2021, 18 (12)