Yamabe Solitons and t-Quasi Yamabe Gradient Solitons on Riemannian Manifolds Admitting Concurrent-Recurrent Vector Fields

被引:1
|
作者
Naik, Devaraja Mallesha [1 ]
Fasihi-Ramandi, Ghodratallah [2 ]
Aruna Kumara, H. [3 ]
Venkatesha, Venkatesha [4 ]
机构
[1] Kuvempu Univ, Dept Math, Shivamogga 577451, Karnataka, India
[2] Imam Khomeini Int Univ, Dept Pure Math, Fac Sci, Qazvin, Iran
[3] Dept Math BMS Inst Technol & Management Yelahanka, Bangalore 560064, India
[4] Kuvempu Univ, Dept Math, Shankaraghatta 577451, Karnataka, India
关键词
Yamabe soliton; tau-quasi Yamabe gradient soliton; conformal vector field;
D O I
10.1515/ms-2023-0037
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a Riemannian manifold (M,g) admitting a concurrent-recurrent vector field for which the metric g is a Yamabe soliton or a t-quasi Yamabe gradient soliton. We show that if the metric of a Riemannian three-manifold (M, g) admitting a concurrent-recurrent vector field is a Yamabe soliton, then M is of constant negative curvature -a(2). In this case, we see that the potential vector field is Killing. Next, we show that if the metric of a Riemannian manifold M admitting concurrent-recurrent vector field is a non-trivial r-quasi Yamabe gradient soliton with potential function f, then M has constant scalar curvature and is equal to -n(n - 1)a(2). Finally, an illustrative example is presented.
引用
收藏
页码:501 / 510
页数:10
相关论文
共 50 条