Generalized Ricci solitons on Riemannian manifolds admitting concurrent-recurrent vector field

被引:0
|
作者
Devaraja Mallesha Naik
H. Aruna Kumara
V. Venkatesha
机构
[1] CHRIST (Deemed to be University),Department of Mathematics, Centre for Mathematical Needs
[2] Kuvempu University,Department of Mathematics
来源
The Journal of Analysis | 2022年 / 30卷
关键词
Generalized Ricci soliton; Gradient generalized Ricci soliton; Conformal vector field; 53C21; 53C25; 53C44;
D O I
暂无
中图分类号
学科分类号
摘要
Let (M, g) be a Riemannian manifold admitting a concurrent-recurrent vector field ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu$$\end{document}. We prove that if the metric g is a generalized Ricci soliton such that the potential field V is a conformal vector field, then M is Einstein. Next we show that if the metric of M is a gradient generalized Ricci soliton, then either of these three occurs: (i) ν♭\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu ^\flat$$\end{document} is invariant along gradient of potential function; (ii) M is Einstein; (iii) the potential vector field is pointwise collinear to concurrent-recurrent vector field ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu$$\end{document}. Finally, we investigate gradient generalized Ricci soliton on a Riemannian manifold (M, g) admitting a unit parallel vector field, and in this case we show that if g is a non-steady gradient generalized Ricci soliton, then the Ricci tensor satisfies Ric=-λα{g-ν♭⊗ν♭}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Ric=-\frac{\lambda }{\alpha }\{g-\nu ^\flat \otimes \nu ^\flat \}$$\end{document}, where ν♭\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu ^\flat$$\end{document} is the canonical 1-form associated to ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu$$\end{document}.
引用
收藏
页码:1023 / 1031
页数:8
相关论文
共 50 条
  • [1] Generalized Ricci solitons on Riemannian manifolds admitting concurrent-recurrent vector field
    Naik, Devaraja Mallesha
    Kumara, H. Aruna
    Venkatesha, V.
    [J]. JOURNAL OF ANALYSIS, 2022, 30 (03): : 1023 - 1031
  • [2] Ricci solitons on Riemannian manifolds admitting certain vector field
    Naik, Devaraja Mallesha
    [J]. RICERCHE DI MATEMATICA, 2024, 73 (01) : 531 - 546
  • [3] Ricci solitons on Riemannian manifolds admitting certain vector field
    Devaraja Mallesha Naik
    [J]. Ricerche di Matematica, 2024, 73 : 531 - 546
  • [4] Yamabe Solitons and t-Quasi Yamabe Gradient Solitons on Riemannian Manifolds Admitting Concurrent-Recurrent Vector Fields
    Naik, Devaraja Mallesha
    Fasihi-Ramandi, Ghodratallah
    Aruna Kumara, H.
    Venkatesha, Venkatesha
    [J]. MATHEMATICA SLOVACA, 2023, 73 (02) : 501 - 510
  • [5] Static perfect fluid spacetime on Riemannian manifolds admitting concurrent-recurrent vector field with Bach tensor
    Praveena, M. M.
    Kumara, H. Aruna
    Arjun, C. M.
    Siddesha, M. S.
    [J]. JOURNAL OF APPLIED ANALYSIS, 2024,
  • [6] Ricci Solitons on Golden Riemannian Manifolds
    Savita Rani
    Ram Shankar Gupta
    [J]. Mediterranean Journal of Mathematics, 2023, 20
  • [7] Gradient Ricci solitons admitting a closed conformal Vector field
    Diogenes, R.
    Ribeiro, E., Jr.
    Silva Filho, J.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 455 (02) : 1975 - 1983
  • [8] Ricci Solitons on Golden Riemannian Manifolds
    Rani, Savita
    Gupta, Ram Shankar
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (03)
  • [9] Geometry of generalized Ricci-type solitons on a class of Riemannian manifolds
    Kumara, H. Aruna
    Naik, Devaraja Mallesha
    Venkatesha, V.
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2022, 176
  • [10] Gradient Ricci Solitons on Spacelike Hypersurfaces of Lorentzian Manifolds Admitting a Closed Conformal Timelike Vector Field
    Alshehri, Norah
    Guediri, Mohammed
    [J]. MATHEMATICS, 2024, 12 (06)