Generalized Ricci solitons on Riemannian manifolds admitting concurrent-recurrent vector field

被引:0
|
作者
Devaraja Mallesha Naik
H. Aruna Kumara
V. Venkatesha
机构
[1] CHRIST (Deemed to be University),Department of Mathematics, Centre for Mathematical Needs
[2] Kuvempu University,Department of Mathematics
来源
The Journal of Analysis | 2022年 / 30卷
关键词
Generalized Ricci soliton; Gradient generalized Ricci soliton; Conformal vector field; 53C21; 53C25; 53C44;
D O I
暂无
中图分类号
学科分类号
摘要
Let (M, g) be a Riemannian manifold admitting a concurrent-recurrent vector field ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu$$\end{document}. We prove that if the metric g is a generalized Ricci soliton such that the potential field V is a conformal vector field, then M is Einstein. Next we show that if the metric of M is a gradient generalized Ricci soliton, then either of these three occurs: (i) ν♭\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu ^\flat$$\end{document} is invariant along gradient of potential function; (ii) M is Einstein; (iii) the potential vector field is pointwise collinear to concurrent-recurrent vector field ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu$$\end{document}. Finally, we investigate gradient generalized Ricci soliton on a Riemannian manifold (M, g) admitting a unit parallel vector field, and in this case we show that if g is a non-steady gradient generalized Ricci soliton, then the Ricci tensor satisfies Ric=-λα{g-ν♭⊗ν♭}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Ric=-\frac{\lambda }{\alpha }\{g-\nu ^\flat \otimes \nu ^\flat \}$$\end{document}, where ν♭\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu ^\flat$$\end{document} is the canonical 1-form associated to ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu$$\end{document}.
引用
收藏
页码:1023 / 1031
页数:8
相关论文
共 50 条
  • [31] GENERALIZED SURGERY ON RIEMANNIAN MANIFOLDS OF POSITIVE RICCI CURVATURE
    Reiser, Philipp
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 376 (05) : 3397 - 3418
  • [32] CLASSES OF GRADIENT RICCI SOLITONS ON GENERALIZED POINCARE MANIFOLDS
    Bercu, Gabriel
    Postolache, Mihai
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2012, 9 (04)
  • [33] Generalized Ricci Solitons on N(κ)-contact Metric Manifolds
    Mandal, Tarak
    Biswas, Urmila
    Sarkar, Avijit
    [J]. KYUNGPOOK MATHEMATICAL JOURNAL, 2023, 63 (02): : 313 - 324
  • [34] On sequential warped product manifolds admitting gradient Ricci-harmonic solitons
    Karaca, Fatma
    Ozgur, Cihan
    [J]. PHYSICA SCRIPTA, 2023, 98 (08)
  • [35] ON 3-DIMENSIONAL TRANS-SASAKIAN MANIFOLDS ADMITTING *-RICCI SOLITONS
    Haseeb, Abdul
    Harish, H.
    Prakasha, D. G.
    [J]. JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2022, 15 (01): : 105 - 121
  • [36] Ricci-Yamabe solitons and 3-dimensional Riemannian manifolds
    De, Uday Chand
    Sardar, Arpan
    De, Krishnendu
    [J]. TURKISH JOURNAL OF MATHEMATICS, 2022, 46 (03) : 1078 - 1088
  • [37] Characterizations of Ricci–Bourguignon Almost Solitons on Pseudo-Riemannian Manifolds
    Dhriti Sundar Patra
    Akram Ali
    Fatemah Mofarreh
    [J]. Mediterranean Journal of Mathematics, 2022, 19
  • [38] COTTON TENSOR ON SASAKIAN 3-MANIFOLDS ADMITTING ETA RICCI SOLITONS
    Kar, Debabrata
    Majhi, Pradip
    [J]. COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2021, 70 (02): : 569 - 581
  • [39] ON RICCI-BOURGUIGNON h-ALMOST SOLITONS IN RIEMANNIAN MANIFOLDS
    Soylu, Yasemin
    [J]. JOURNAL OF SCIENCE AND ARTS, 2020, (03): : 673 - 680
  • [40] On Generalized Ricci Recurrent Manifolds with Applications To Relativity
    Mallick, Sahanous
    De, Avik
    De, Uday Chand
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2013, 83 (02) : 143 - 152