Ricci solitons on Riemannian manifolds admitting certain vector field

被引:0
|
作者
Devaraja Mallesha Naik
机构
[1] CHRIST (Deemed to be University),Department of Mathematics
来源
Ricerche di Matematica | 2024年 / 73卷
关键词
Conformal vector field; Ricci soliton; Ricci almost soliton; Gradient Ricci almost soliton; 53C25; 53C44; 53C21;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we initiate the study of impact of the existence of a unit vector ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu $$\end{document}, called a concurrent-recurrent vector field, on the geometry of a Riemannian manifold. Some examples of these vector fields are provided on Riemannian manifolds, and basic geometric properties of these vector fields are derived. Next, we characterize Ricci solitons on 3-dimensional Riemannian manifolds and gradient Ricci almost solitons on a Riemannian manifold (of dimension n) admitting a concurrent-recurrent vector field. In particular, it is proved that the Riemannian 3-manifold equipped with a concurrent-recurrent vector field is of constant negative curvature -α2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\alpha ^2$$\end{document} when its metric is a Ricci soliton. Further, it has been shown that a Riemannian manifold admitting a concurrent-recurrent vector field, whose metric is a gradient Ricci almost soliton, is Einstein.
引用
收藏
页码:531 / 546
页数:15
相关论文
共 50 条
  • [41] Gravitational solitons and complete Ricci flat Riemannian manifolds of infinite topological type
    Khuri, Marcus
    Reiris, Martin
    Weinstein, Gilbert
    Yamada, Sumio
    [J]. PURE AND APPLIED MATHEMATICS QUARTERLY, 2024, 20 (04) : 1895 - 1921
  • [42] SOME RESULTS ON COSYMPLECTIC MANIFOLDS ADMITTING CERTAIN VECTOR FIELDS
    Yoldas, Halm Ibrahim
    [J]. JOURNAL OF GEOMETRY AND SYMMETRY IN PHYSICS, 2021, 60 : 83 - 94
  • [43] *-RICCI SOLITONS AND GRADIENT ALMOST *-RICCI SOLITONS ON KENMOTSU MANIFOLDS
    Venkatesha
    Naik, Devaraja Mallesha
    Kumara, H. Aruna
    [J]. MATHEMATICA SLOVACA, 2019, 69 (06) : 1447 - 1458
  • [44] Conformal Ricci almost solitons with certain soliton vector fields
    Sarkar, Avijit
    Halder, Suparna
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024,
  • [45] RICCI SOLITONS AND GRADIENT RICCI SOLITONS ON NEARLY KENMOTSU MANIFOLDS
    Ayar, Gulhan
    Yildirim, Mustafa
    [J]. FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2019, 34 (03): : 503 - 510
  • [46] CHARACTERIZATIONS OF A RIEMANNIAN MANIFOLD ADMITTING RICCI SOLITIONS
    Barua, B.
    De, U. C.
    [J]. FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2013, 28 (02): : 127 - 132
  • [47] RIEMANNIAN MANIFOLDS ADMITTING SOME GEODESIC
    KUROGI, T
    [J]. PROCEEDINGS OF THE JAPAN ACADEMY, 1974, 50 (02): : 124 - 126
  • [48] Lorentzian manifolds admitting a killing vector field.
    Sanchez, M
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (01) : 643 - 654
  • [49] Ricci flows and Ricci solitons on η-Einstein manifolds
    Bhattacharyya, Arindam
    De, Tapan
    [J]. BALKAN JOURNAL OF GEOMETRY AND ITS APPLICATIONS, 2010, 15 (02): : 14 - 21
  • [50] RICCI SOLITONS IN KENMOTSU MANIFOLDS
    Nagaraja, H. G.
    Premalatha, C. R.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS, 2012, 3 (02): : 18 - 24