Infinitesimal Harmonic Transformations and Ricci Solitons on Complete Riemannian Manifolds

被引:1
|
作者
Stepanov, S. E. [1 ]
Tsyganok, I. I. [2 ]
机构
[1] Financial Acad Govt Russian Federat, 49 Leningradskii Pr 49, Moscow 125993, Russia
[2] Russian Univ Cooperat, Vladimir Branch, Vladimir, Russia
关键词
Ricci solitons; infinitesimal harmonic transformations; complete Riemannian manifold;
D O I
10.3103/S1066369X10030138
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Ricci solitons were introduced by R. Hamilton as natural generalizations of Einstein metrics. A Ricci soliton on a smooth manifold M is a triple (g(0), xi, lambda), where g(0) is a complete Riemannian metric, xi a vector field, and lambda a constant such that the Ricci tensor Ric(0) of the metric g(0) satisfies the equation -2Ric(0) = L xi g(0) + 2 lambda g(0). The following statement is one of the main results of the paper. Let (g(0), xi, lambda) be a Ricci soliton such that (M, g(0)) is a complete noncompact oriented Riemannian manifold, integral(M) parallel to xi parallel to dv < infinity, and the scalar curvature s(0) of g(0) has a constant sign on M, then (M, g(0)) is an Einstein manifold.
引用
收藏
页码:84 / 87
页数:4
相关论文
共 50 条
  • [41] Ricci Solitons on Riemannian Hypersurfaces Arising from Closed Conformal Vector Fields in Riemannian and Lorentzian Manifolds
    Alshehri, Norah
    Guediri, Mohammed
    [J]. JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2024, 31 (01)
  • [42] *-RICCI SOLITONS AND GRADIENT ALMOST *-RICCI SOLITONS ON KENMOTSU MANIFOLDS
    Venkatesha
    Naik, Devaraja Mallesha
    Kumara, H. Aruna
    [J]. MATHEMATICA SLOVACA, 2019, 69 (06) : 1447 - 1458
  • [43] Poincare inequality on complete Riemannian manifolds with Ricci curvature bounded below
    Besson, Gerard
    Courtois, Gilles
    Hersonsky, Sa'ar
    [J]. MATHEMATICAL RESEARCH LETTERS, 2018, 25 (06) : 1741 - 1769
  • [44] RICCI SOLITONS AND GRADIENT RICCI SOLITONS ON NEARLY KENMOTSU MANIFOLDS
    Ayar, Gulhan
    Yildirim, Mustafa
    [J]. FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2019, 34 (03): : 503 - 510
  • [45] HARMONIC INFINITESIMAL TRANSFORMATIONS
    NOUHAUD, O
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1972, 274 (07): : 573 - &
  • [46] Gradient Ricci-harmonic solitons on doubly warped product manifolds
    Karaca, Fatma
    Ozgur, Cihan
    [J]. FILOMAT, 2023, 37 (18) : 5969 - 5977
  • [47] Infinitesimal Hilbertianity of Weighted Riemannian Manifolds
    Lucic, Danka
    Pasqualetto, Enrico
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2020, 63 (01): : 118 - 140
  • [48] Ricci flows and Ricci solitons on η-Einstein manifolds
    Bhattacharyya, Arindam
    De, Tapan
    [J]. BALKAN JOURNAL OF GEOMETRY AND ITS APPLICATIONS, 2010, 15 (02): : 14 - 21
  • [49] RICCI SOLITONS IN KENMOTSU MANIFOLDS
    Nagaraja, H. G.
    Premalatha, C. R.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS, 2012, 3 (02): : 18 - 24
  • [50] η-Ricci solitons in ε-Kenmotsu manifolds
    Haseeb, Abdul
    De, Uday Chand
    [J]. JOURNAL OF GEOMETRY, 2019, 110 (02)