Complete Ricci solitons on Finsler manifolds

被引:0
|
作者
Behroz Bidabad [1 ]
Mohamad Yar Ahmadi [1 ]
机构
[1] Faculty of Mathematics and Computer Science, Amirkabir University of Technology
关键词
quasi-Einstein; shrinking; Finsler metric; Ricci soliton; Ricci flow;
D O I
暂无
中图分类号
O186.1 [微分几何];
学科分类号
0701 ; 070101 ;
摘要
The geometric flow theory and its applications turned into one of the most intensively developing branches of modern geometry. Here, a brief introduction to Finslerian Ricci flow and their self-similar solutions known as Ricci solitons are given and some recent results are presented. They are a generalization of Einstein metrics and are previously developed by the present authors for Finsler manifolds. In the present work, it is shown that a complete shrinking Ricci soliton Finsler manifold has a finite fundamental group.
引用
收藏
页码:1825 / 1832
页数:8
相关论文
共 50 条
  • [21] η-RICCI SOLITONS AND GRADIENT RICCI SOLITONS ON δ- LORENTZIAN TRANS-SASAKIAN MANIFOLDS
    Siddiqi, Mohd Danish
    Akyol, Mehmet Akif
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2021, 36 (03): : 529 - 545
  • [22] Almost η-Ricci solitons on Kenmotsu manifolds
    Patra, Dhriti Sundar
    Rovenski, Vladimir
    EUROPEAN JOURNAL OF MATHEMATICS, 2021, 7 (04) : 1753 - 1766
  • [23] Ricci Solitons on Golden Riemannian Manifolds
    Rani, Savita
    Gupta, Ram Shankar
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (03)
  • [24] Ricci Solitons on η-Einstein Contact Manifolds
    Chand, De Uday
    Suh, Young Jin
    Majhi, Pradip Kumar
    FILOMAT, 2018, 32 (13) : 4679 - 4687
  • [25] Ricci Solitons on Golden Riemannian Manifolds
    Savita Rani
    Ram Shankar Gupta
    Mediterranean Journal of Mathematics, 2023, 20
  • [26] η-Ricci solitons on nearly Kenmotsu manifolds
    Ayar, Gulhan
    Yildirim, Mustafa
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2019, 12 (06)
  • [27] RICCI SOLITONS AND CONTACT METRIC MANIFOLDS
    Ghosh, Amalendu
    GLASGOW MATHEMATICAL JOURNAL, 2013, 55 (01) : 123 - 130
  • [28] *-CONFORMAL η-RICCI SOLITONS IN ε-KENMOTSU MANIFOLDS
    Haseeb, Abdul
    Prasad, Rajendra
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2020, 108 (122): : 91 - 102
  • [29] COMPLETE GRADIENT RICCI SOLITONS
    Simon, Udo
    COLLOQUIUM MATHEMATICUM, 2015, 141 (01) : 125 - 141
  • [30] NEW TOOLS IN FINSLER GEOMETRY: STRETCH AND RICCI SOLITONS
    Crasmareanu, Mircea
    MATHEMATICAL REPORTS, 2014, 16 (01): : 83 - 93