*-CONFORMAL η-RICCI SOLITONS IN ε-KENMOTSU MANIFOLDS

被引:5
|
作者
Haseeb, Abdul [1 ]
Prasad, Rajendra [2 ]
机构
[1] Jazan Univ, Fac Sci, Dept Math, Jazan, Saudi Arabia
[2] Univ Lucknow, Dept Math & Astron, Lucknow, Uttar Pradesh, India
来源
关键词
*-conformal eta-Ricci solitons; epsilon-Kenmotsu manifolds; concircular curvature tensor; eta-Einstein manifolds; Einstein manifolds; REAL HYPERSURFACES;
D O I
10.2298/PIM2022091H
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We characterize epsilon-Kenmotsu manifolds admitting *-conformal eta-Ricci solitons. At last, an example of 7-dimension epsilon-Kenmotsu manifold is given.
引用
收藏
页码:91 / 102
页数:12
相关论文
共 50 条
  • [1] Conformal η-Ricci almost solitons of Kenmotsu manifolds
    Dey, Santu
    Uddin, Siraj
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2022, 19 (08)
  • [2] Conformal Vector Fields and Conformal Ricci Solitons on α-Kenmotsu Manifolds
    Falcitelli, Maria
    Sarkar, Avijit
    Halder, Suparna
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (03)
  • [3] On *-Conformal Ricci Solitons on a Class of Almost Kenmotsu Manifolds
    Majhi, Pradip
    Dey, Dibakar
    [J]. KYUNGPOOK MATHEMATICAL JOURNAL, 2021, 61 (04): : 781 - 790
  • [4] A study of conformal almost Ricci solitons on Kenmotsu manifolds
    Sarkar, Sumanjit
    Dey, Santu
    Bhattacharyya, Arindam
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2023, 20 (04)
  • [5] Conformal η-Ricci solitons within the framework of indefinite Kenmotsu manifolds
    Li, Yanlin
    Ganguly, Dipen
    Dey, Santu
    Bhattacharyya, Arindam
    [J]. AIMS MATHEMATICS, 2022, 7 (04): : 5408 - 5430
  • [6] RICCI SOLITONS IN KENMOTSU MANIFOLDS
    Nagaraja, H. G.
    Premalatha, C. R.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS, 2012, 3 (02): : 18 - 24
  • [7] η-Ricci solitons in ε-Kenmotsu manifolds
    Haseeb, Abdul
    De, Uday Chand
    [J]. JOURNAL OF GEOMETRY, 2019, 110 (02)
  • [8] Ricci Solitons and Gradient Ricci Solitons in a Kenmotsu Manifolds
    De, Uday Chand
    Matsuyama, Yoshio
    [J]. SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2013, 37 (05) : 691 - 697
  • [9] *-RICCI SOLITONS AND GRADIENT ALMOST *-RICCI SOLITONS ON KENMOTSU MANIFOLDS
    Venkatesha
    Naik, Devaraja Mallesha
    Kumara, H. Aruna
    [J]. MATHEMATICA SLOVACA, 2019, 69 (06) : 1447 - 1458
  • [10] RICCI SOLITONS AND GRADIENT RICCI SOLITONS ON NEARLY KENMOTSU MANIFOLDS
    Ayar, Gulhan
    Yildirim, Mustafa
    [J]. FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2019, 34 (03): : 503 - 510