Complete Ricci solitons on Finsler manifolds

被引:0
|
作者
Behroz Bidabad [1 ]
Mohamad Yar Ahmadi [1 ]
机构
[1] Faculty of Mathematics and Computer Science, Amirkabir University of Technology
关键词
quasi-Einstein; shrinking; Finsler metric; Ricci soliton; Ricci flow;
D O I
暂无
中图分类号
O186.1 [微分几何];
学科分类号
0701 ; 070101 ;
摘要
The geometric flow theory and its applications turned into one of the most intensively developing branches of modern geometry. Here, a brief introduction to Finslerian Ricci flow and their self-similar solutions known as Ricci solitons are given and some recent results are presented. They are a generalization of Einstein metrics and are previously developed by the present authors for Finsler manifolds. In the present work, it is shown that a complete shrinking Ricci soliton Finsler manifold has a finite fundamental group.
引用
下载
收藏
页码:1825 / 1832
页数:8
相关论文
共 50 条
  • [41] RICCI SOLITONS ON COMPACT 3-MANIFOLDS
    IVEY, T
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 1993, 3 (04) : 301 - 307
  • [42] Ricci Solitons on Multiply Warped Product Manifolds
    Kaya, Dilek Acikgoz
    Onat, Leyla
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2020, 13 (02): : 152 - 159
  • [43] ☆-CONFORMAL RICCI SOLITONS ON ALMOST COKAHLER MANIFOLDS
    Mandal, Tarak
    Sarkar, Avijit
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2023, 38 (03): : 865 - 880
  • [44] η-RICCI SOLITONS IN (ε, δ)-TRANS-SASAKIAN MANIFOLDS
    Siddiqi, Mohd Danish
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2019, 34 (01): : 45 - 56
  • [45] *-Ricci solitons on Sasakian 3-manifolds
    Majhi, Pradip
    De, Uday Chand
    Suh, Young Jin
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2018, 93 (1-2): : 241 - 252
  • [46] Conformal η-Ricci almost solitons of Kenmotsu manifolds
    Dey, Santu
    Uddin, Siraj
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2022, 19 (08)
  • [47] Generalized Ricci solitons on contact metric manifolds
    Ghosh, Gopal
    De, Uday Chand
    AFRIKA MATEMATIKA, 2022, 33 (02)
  • [48] RICCI SOLITONS IN alpha-COSYMPLECTIC MANIFOLDS
    Singh, Jay Prakash
    Lalmalsawma, Chawngthu
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2018, 33 (03): : 375 - 387
  • [49] *-RICCI SOLITONS AND *-GRADIENT RICCI SOLITONS ON 3-DIMENSIONAL TRANS-SASAKIAN MANIFOLDS
    Dey, Dibakar
    Majhi, Pradip
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 35 (02): : 625 - 637
  • [50] η-RICCI SOLITONS IN (ε)-ALMOST PARACONTACT METRIC MANIFOLDS
    Blaga, Adara Monica
    Perktas, Selcen Yuksel
    Acet, Bilal Eftal
    Erdogan, Feyza Esra
    GLASNIK MATEMATICKI, 2018, 53 (01) : 205 - 220