Navigation Finsler metrics on a gradient Ricci soliton

被引:0
|
作者
LI Ying [1 ]
MO Xiao-huan [2 ]
WANG Xiao-yang [3 ]
机构
[1] Department of Applied Mathematics,Zhejiang University of Technology
[2] Key Laboratory of Pure and Applied Mathematics,School of Mathematical Sciences,Peking University
[3] School of Mathematics and Statistics,Beijing Institute of Technology
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
O186.1 [微分几何];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study a class of Finsler metrics defined by a vector field on a gradient Ricci soliton. We obtain a necessary and sufficient condition for these Finsler metrics on a compact gradient Ricci soliton to be of isotropic S-curvature by establishing a new integral inequality. Then we determine the Ricci curvature of navigation Finsler metrics of isotropic S-curvature on a gradient Ricci soliton generalizing result only known in the case when such soliton is of Einstein type. As its application, we obtain the Ricci curvature of all navigation Finsler metrics of isotropic S-curvature on Gaussian shrinking soliton.
引用
收藏
页码:266 / 275
页数:10
相关论文
共 50 条
  • [1] Navigation Finsler metrics on a gradient Ricci soliton
    Li, Ying
    Mo, Xiao-huan
    Wang, Xiao-yang
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2024, 39 (02) : 266 - 275
  • [2] Rigidity of Finsler gradient steady Ricci soliton
    Hongmei Zhu
    Peijuan Rao
    Calculus of Variations and Partial Differential Equations, 2023, 62
  • [3] Rigidity of Finsler gradient steady Ricci soliton
    Zhu, Hongmei
    Rao, Peijuan
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2023, 62 (04)
  • [4] A note on gradient Ricci soliton warped metrics
    Gomes, Jose N., V
    Marrocos, Marcus A. M.
    Ribeiro, Adrian V. C.
    MATHEMATISCHE NACHRICHTEN, 2021, 294 (10) : 1879 - 1888
  • [5] On a Class of Ricci Quadratic Finsler Metrics
    Gabrani, Mehran
    Sevim, Esra Sengelen
    Ulgen, Semail
    FRONTIERS OF MATHEMATICS, 2024, 19 (05): : 851 - 864
  • [6] On a class of Ricci-flat Finsler metrics in Finsler geometry
    Chen, Bin
    Shen, Zhongmin
    Zhao, Lili
    JOURNAL OF GEOMETRY AND PHYSICS, 2013, 70 : 30 - 38
  • [7] ON A CLASS OF FINSLER GRADIENT RICCI SOLITONS
    Mo, Xiaohuan
    Zhu, Hongmei
    Zhu, Ling
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, : 1763 - 1773
  • [8] On strongly Ricci-Quadratic Finsler Metrics
    Esra Sengelen Sevim
    Zhongmin Shen
    Semail Ülgen
    The Journal of Geometric Analysis, 2023, 33
  • [9] On a class of projective Ricci flat Finsler metrics
    Cheng, Xinyue
    Shen, Yuling
    Ma, Xiaoyu
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2017, 90 (1-2): : 169 - 180
  • [10] On a class of projective Ricci curvature of Finsler metrics
    Zhu, Hongmei
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2021, 32 (11)