GRADIENT RICCI SOLITONS ON ALMOST KENMOTSU MANIFOLDS

被引:8
|
作者
Wang, Yaning [1 ]
De, Uday Chand [2 ]
Liu, Ximin [3 ]
机构
[1] Henan Normal Univ, Coll Math & Informat Sci, Henan Engn Lab Big Data Stat Anal & Optimal Contr, Xinxiang 453007, Henan, Peoples R China
[2] Univ Calcutta, Dept Pure Math, Kolkata 700019, W Bengal, India
[3] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Liaoning, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
almost Kenmotsu manifold; gradient Ricci soliton; n-Einstein condition; nullity distribution;
D O I
10.2298/PIM140527003W
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
If the metric of an almost Kenmotsu manifold with conformal Reeb foliation is a gradient Ricci soliton, then it is an Einstein metric and the Ricci soliton is expanding. Moreover, let (M2n+1,phi,xi,eta,g) be an almost Kenmotsu manifold with xi belonging to the (k, mu)'- nullity distribution and h not equal 0. If the metric g of M2n+1 is a gradient Ricci soliton, then M2n+1 is locally isometric to the Riemannian product of an (n+1)-dimensional manifold of constant sectional curvature -4 and a flat n-dimensional manifold, also, the Ricci soliton is expanding with lambda = 4n.
引用
收藏
页码:227 / 235
页数:9
相关论文
共 50 条
  • [1] *-RICCI SOLITONS AND GRADIENT ALMOST *-RICCI SOLITONS ON KENMOTSU MANIFOLDS
    Venkatesha
    Naik, Devaraja Mallesha
    Kumara, H. Aruna
    [J]. MATHEMATICA SLOVACA, 2019, 69 (06) : 1447 - 1458
  • [2] GRADIENT RICCI ALMOST SOLITONS ON TWO CLASSES OF ALMOST KENMOTSU MANIFOLDS
    Wang, Yaning
    [J]. JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2016, 53 (05) : 1101 - 1114
  • [3] Almost η-Ricci solitons on Kenmotsu manifolds
    Patra, Dhriti Sundar
    Rovenski, Vladimir
    [J]. EUROPEAN JOURNAL OF MATHEMATICS, 2021, 7 (04) : 1753 - 1766
  • [4] Ricci Solitons and Gradient Ricci Solitons in a Kenmotsu Manifolds
    De, Uday Chand
    Matsuyama, Yoshio
    [J]. SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2013, 37 (05) : 691 - 697
  • [5] RICCI SOLITONS AND GRADIENT RICCI SOLITONS ON NEARLY KENMOTSU MANIFOLDS
    Ayar, Gulhan
    Yildirim, Mustafa
    [J]. FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2019, 34 (03): : 503 - 510
  • [6] Conformal η-Ricci almost solitons of Kenmotsu manifolds
    Dey, Santu
    Uddin, Siraj
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2022, 19 (08)
  • [7] Ricci almost solitons on Concircular Ricci pseudosymmetric β-Kenmotsu manifolds
    Hui, Shyamal Kumar
    Chakraborty, Debabrata
    [J]. HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2018, 47 (03): : 579 - 587
  • [8] Almost Ricci-Yamabe solitons on Almost Kenmotsu manifolds
    Khatri, Mohan
    Singh, Jay Prakash
    [J]. ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2023, 16 (08)
  • [9] On *-Conformal Ricci Solitons on a Class of Almost Kenmotsu Manifolds
    Majhi, Pradip
    Dey, Dibakar
    [J]. KYUNGPOOK MATHEMATICAL JOURNAL, 2021, 61 (04): : 781 - 790
  • [10] Ricci solitons on almost Kenmotsu 3-manifolds
    Wang, Yaning
    [J]. OPEN MATHEMATICS, 2017, 15 : 1236 - 1243