Non-Boolean quantum amplitude amplification and quantum mean estimation

被引:0
|
作者
Prasanth Shyamsundar
机构
[1] Fermi National Accelerator Laboratory,Fermilab Quantum Institute
关键词
Quantum algorithm; Quantum speedup; Grover’s algorithm; Quantum machine learning; State overlap;
D O I
暂无
中图分类号
学科分类号
摘要
This paper generalizes the quantum amplitude amplification and amplitude estimation algorithms to work with non-Boolean oracles. The action of a non-Boolean oracle Uφ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_\varphi $$\end{document} on an eigenstate |x⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathinner {|{x}\rangle }$$\end{document} is to apply a state-dependent phase-shift φ(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi (x)$$\end{document}. Unlike Boolean oracles, the eigenvalues exp(iφ(x))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\exp (i\varphi (x))$$\end{document} of a non-Boolean oracle are not restricted to be ±1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pm 1$$\end{document}. Two new oracular algorithms based on such non-Boolean oracles are introduced. The first is the non-Boolean amplitude amplification algorithm, which preferentially amplifies the amplitudes of the eigenstates based on the value of φ(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi (x)$$\end{document}. Starting from a given initial superposition state |ψ0⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathinner {|{\psi _0}\rangle }$$\end{document}, the basis states with lower values of cos(φ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cos (\varphi )$$\end{document} are amplified at the expense of the basis states with higher values of cos(φ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cos (\varphi )$$\end{document}. The second algorithm is the quantum mean estimation algorithm, which uses quantum phase estimation to estimate the expectation ⟨ψ0|Uφ|ψ0⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathinner {\langle {\psi _0|U_\varphi |\psi _0}\rangle }$$\end{document}, i.e., the expected value of exp(iφ(x))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\exp (i\varphi (x))$$\end{document} for a random x sampled by making a measurement on |ψ0⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathinner {|{\psi _0}\rangle }$$\end{document}. It is shown that the quantum mean estimation algorithm offers a quadratic speedup over the corresponding classical algorithm. Both algorithms are demonstrated using simulations for a toy example. Potential applications of the algorithms are briefly discussed.
引用
收藏
相关论文
共 50 条
  • [31] A graph-theoretical approach to Boolean interpolation of non-Boolean functions
    Rudeanu, S
    Simovici, DA
    34TH INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC, PROCEEDINGS, 2004, : 245 - 250
  • [33] Iterative Refinement Quantum Amplitude Estimation
    Saito, Yoshiyuki
    Lee, Xinwei
    Xie, Ningyi
    Cai, Dongsheng
    Shin, Jungpil
    Asai, Nobuyoshi
    2023 IEEE 16TH INTERNATIONAL SYMPOSIUM ON EMBEDDED MULTICORE/MANY-CORE SYSTEMS-ON-CHIP, MCSOC, 2023, : 202 - 209
  • [34] Non-Boolean computing with nanomagnets for computer vision applications
    Bhanja S.
    Karunaratne D.K.
    Panchumarthy R.
    Rajaram S.
    Sarkar S.
    Nature Nanotechnology, 2016, 11 (2) : 177 - 183
  • [35] A NON-BOOLEAN VERSION OF FEFERMAN-VAUGHT THEOREM
    LAVENDHOMME, R
    LUCAS, T
    ZEITSCHRIFT FUR MATHEMATISCHE LOGIK UND GRUNDLAGEN DER MATHEMATIK, 1985, 31 (04): : 299 - 308
  • [36] On the bias in iterative quantum amplitude estimation
    Miyamoto, Koichi
    EPJ QUANTUM TECHNOLOGY, 2024, 11 (01)
  • [37] Bootstrapping system defined by inconsistent relation between Boolean and non-Boolean algebra
    Gunji, YP
    Sadaoka, H
    Ito, K
    APPLIED MATHEMATICS AND COMPUTATION, 1996, 79 (01) : 43 - 97
  • [38] Emulating Massively Parallel non-Boolean Operators on FPGA
    Kiss, Andras
    Nagy, Zoltan
    Szolgay, Peter
    Csaba, Gyoergy
    Hu, Xiaobo Sharon
    Porod, Wolfgang
    2015 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2015, : 1981 - 1984
  • [39] Editorial: Focus on non-Boolean computing with nanomagnetic devices
    Bandyopadhyay, Supriyo
    NANOTECHNOLOGY, 2021, 32 (26)
  • [40] MOBIUS TRANSFORMATIONS IN QUANTUM AMPLITUDE AMPLIFICATION WITH GENERALIZED PHASES
    Bautista-Ramos, Cesar
    Castillo-Tepox, Nora
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2010, 8 (06) : 923 - 935