Non-Boolean quantum amplitude amplification and quantum mean estimation

被引:0
|
作者
Prasanth Shyamsundar
机构
[1] Fermi National Accelerator Laboratory,Fermilab Quantum Institute
关键词
Quantum algorithm; Quantum speedup; Grover’s algorithm; Quantum machine learning; State overlap;
D O I
暂无
中图分类号
学科分类号
摘要
This paper generalizes the quantum amplitude amplification and amplitude estimation algorithms to work with non-Boolean oracles. The action of a non-Boolean oracle Uφ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_\varphi $$\end{document} on an eigenstate |x⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathinner {|{x}\rangle }$$\end{document} is to apply a state-dependent phase-shift φ(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi (x)$$\end{document}. Unlike Boolean oracles, the eigenvalues exp(iφ(x))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\exp (i\varphi (x))$$\end{document} of a non-Boolean oracle are not restricted to be ±1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pm 1$$\end{document}. Two new oracular algorithms based on such non-Boolean oracles are introduced. The first is the non-Boolean amplitude amplification algorithm, which preferentially amplifies the amplitudes of the eigenstates based on the value of φ(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi (x)$$\end{document}. Starting from a given initial superposition state |ψ0⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathinner {|{\psi _0}\rangle }$$\end{document}, the basis states with lower values of cos(φ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cos (\varphi )$$\end{document} are amplified at the expense of the basis states with higher values of cos(φ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cos (\varphi )$$\end{document}. The second algorithm is the quantum mean estimation algorithm, which uses quantum phase estimation to estimate the expectation ⟨ψ0|Uφ|ψ0⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathinner {\langle {\psi _0|U_\varphi |\psi _0}\rangle }$$\end{document}, i.e., the expected value of exp(iφ(x))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\exp (i\varphi (x))$$\end{document} for a random x sampled by making a measurement on |ψ0⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathinner {|{\psi _0}\rangle }$$\end{document}. It is shown that the quantum mean estimation algorithm offers a quadratic speedup over the corresponding classical algorithm. Both algorithms are demonstrated using simulations for a toy example. Potential applications of the algorithms are briefly discussed.
引用
收藏
相关论文
共 50 条
  • [11] Quantum amplitude amplification by phase noise
    Sadgrove, M.
    EPL, 2009, 86 (05)
  • [12] Gaussian Amplitude Amplification for Quantum Pathfinding
    Koch, Daniel
    Cutugno, Massimiliano
    Karlson, Samuel
    Patel, Saahil
    Wessing, Laura
    Alsing, Paul M.
    ENTROPY, 2022, 24 (07)
  • [13] Probabilistic frames for non-Boolean phenomena
    Narens, Louis
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2016, 374 (2058):
  • [14] Non-volatile spin switch for Boolean and non-Boolean logic
    Datta, Supriyo
    Salahuddin, Sayeef
    Behin-Aein, Behtash
    APPLIED PHYSICS LETTERS, 2012, 101 (25)
  • [15] THEORY REDUCTION AND NON-BOOLEAN THEORIES
    PRIMAS, H
    JOURNAL OF MATHEMATICAL BIOLOGY, 1977, 4 (03) : 281 - 301
  • [16] Iterative quantum amplitude estimation
    Dmitry Grinko
    Julien Gacon
    Christa Zoufal
    Stefan Woerner
    npj Quantum Information, 7
  • [17] Real quantum amplitude estimation
    Manzano, Alberto
    Musso, Daniele
    Leitao, Alvaro
    EPJ QUANTUM TECHNOLOGY, 2023, 10 (01)
  • [18] Iterative quantum amplitude estimation
    Grinko, Dmitry
    Gacon, Julien
    Zoufal, Christa
    Woerner, Stefan
    NPJ QUANTUM INFORMATION, 2021, 7 (01)
  • [19] Real quantum amplitude estimation
    Alberto Manzano
    Daniele Musso
    Álvaro Leitao
    EPJ Quantum Technology, 2023, 10
  • [20] Variational quantum amplitude estimation
    Plekhanov, Kirill
    Rosenkranz, Matthias
    Fiorentini, Mattia
    Lubasch, Michael
    QUANTUM, 2022, 6