Non-Boolean quantum amplitude amplification and quantum mean estimation

被引:0
|
作者
Prasanth Shyamsundar
机构
[1] Fermi National Accelerator Laboratory,Fermilab Quantum Institute
关键词
Quantum algorithm; Quantum speedup; Grover’s algorithm; Quantum machine learning; State overlap;
D O I
暂无
中图分类号
学科分类号
摘要
This paper generalizes the quantum amplitude amplification and amplitude estimation algorithms to work with non-Boolean oracles. The action of a non-Boolean oracle Uφ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_\varphi $$\end{document} on an eigenstate |x⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathinner {|{x}\rangle }$$\end{document} is to apply a state-dependent phase-shift φ(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi (x)$$\end{document}. Unlike Boolean oracles, the eigenvalues exp(iφ(x))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\exp (i\varphi (x))$$\end{document} of a non-Boolean oracle are not restricted to be ±1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pm 1$$\end{document}. Two new oracular algorithms based on such non-Boolean oracles are introduced. The first is the non-Boolean amplitude amplification algorithm, which preferentially amplifies the amplitudes of the eigenstates based on the value of φ(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi (x)$$\end{document}. Starting from a given initial superposition state |ψ0⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathinner {|{\psi _0}\rangle }$$\end{document}, the basis states with lower values of cos(φ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cos (\varphi )$$\end{document} are amplified at the expense of the basis states with higher values of cos(φ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cos (\varphi )$$\end{document}. The second algorithm is the quantum mean estimation algorithm, which uses quantum phase estimation to estimate the expectation ⟨ψ0|Uφ|ψ0⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathinner {\langle {\psi _0|U_\varphi |\psi _0}\rangle }$$\end{document}, i.e., the expected value of exp(iφ(x))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\exp (i\varphi (x))$$\end{document} for a random x sampled by making a measurement on |ψ0⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathinner {|{\psi _0}\rangle }$$\end{document}. It is shown that the quantum mean estimation algorithm offers a quadratic speedup over the corresponding classical algorithm. Both algorithms are demonstrated using simulations for a toy example. Potential applications of the algorithms are briefly discussed.
引用
收藏
相关论文
共 50 条
  • [21] Exploring Boolean and Non-Boolean Computing with Spin Torque Devices
    Roy, Kaushik
    Sharad, Mrigank
    Fan, Deliang
    Yogendra, Karthik
    2013 IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN (ICCAD), 2013, : 576 - 580
  • [22] A Boolean approach to construct neural networks for non-Boolean problems
    Thimm, G
    Fiesler, E
    EIGHTH IEEE INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 1996, : 458 - 459
  • [23] Enhanced quantum signature scheme using quantum amplitude amplification operators
    Elias, Basma
    Younes, Ahmed
    PLOS ONE, 2021, 16 (10):
  • [24] Several remarks on non-Boolean functions over Boolean algebras
    Simovici, DA
    33RD INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC, PROCEEDINGS, 2003, : 163 - 168
  • [25] Using quantum amplitude amplification in genetic algorithms
    Acampora, Giovanni
    Schiattarella, Roberto
    Vitiello, Autilia
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 209
  • [26] On the role of dealing with quantum coherence in amplitude amplification
    Rastegin, Alexey E.
    QUANTUM INFORMATION PROCESSING, 2018, 17 (07)
  • [27] On the role of dealing with quantum coherence in amplitude amplification
    Alexey E. Rastegin
    Quantum Information Processing, 2018, 17
  • [28] Non-Boolean classical relevant logics I
    Ogaard, Tore Fjetland
    SYNTHESE, 2021, 198 (08) : 6993 - 7024
  • [29] Non-Boolean classical relevant logics I
    Tore Fjetland Øgaard
    Synthese, 2021, 198 : 6993 - 7024
  • [30] The Complexity of Promise SAT on Non-Boolean Domains
    Brandts, Alex
    Wrochna, Marcin
    Zivny, Stanislav
    ACM TRANSACTIONS ON COMPUTATION THEORY, 2021, 13 (04)