Non-Boolean quantum amplitude amplification and quantum mean estimation

被引:0
|
作者
Prasanth Shyamsundar
机构
[1] Fermi National Accelerator Laboratory,Fermilab Quantum Institute
关键词
Quantum algorithm; Quantum speedup; Grover’s algorithm; Quantum machine learning; State overlap;
D O I
暂无
中图分类号
学科分类号
摘要
This paper generalizes the quantum amplitude amplification and amplitude estimation algorithms to work with non-Boolean oracles. The action of a non-Boolean oracle Uφ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_\varphi $$\end{document} on an eigenstate |x⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathinner {|{x}\rangle }$$\end{document} is to apply a state-dependent phase-shift φ(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi (x)$$\end{document}. Unlike Boolean oracles, the eigenvalues exp(iφ(x))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\exp (i\varphi (x))$$\end{document} of a non-Boolean oracle are not restricted to be ±1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pm 1$$\end{document}. Two new oracular algorithms based on such non-Boolean oracles are introduced. The first is the non-Boolean amplitude amplification algorithm, which preferentially amplifies the amplitudes of the eigenstates based on the value of φ(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi (x)$$\end{document}. Starting from a given initial superposition state |ψ0⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathinner {|{\psi _0}\rangle }$$\end{document}, the basis states with lower values of cos(φ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cos (\varphi )$$\end{document} are amplified at the expense of the basis states with higher values of cos(φ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cos (\varphi )$$\end{document}. The second algorithm is the quantum mean estimation algorithm, which uses quantum phase estimation to estimate the expectation ⟨ψ0|Uφ|ψ0⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathinner {\langle {\psi _0|U_\varphi |\psi _0}\rangle }$$\end{document}, i.e., the expected value of exp(iφ(x))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\exp (i\varphi (x))$$\end{document} for a random x sampled by making a measurement on |ψ0⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathinner {|{\psi _0}\rangle }$$\end{document}. It is shown that the quantum mean estimation algorithm offers a quadratic speedup over the corresponding classical algorithm. Both algorithms are demonstrated using simulations for a toy example. Potential applications of the algorithms are briefly discussed.
引用
收藏
相关论文
共 50 条
  • [41] Graphene-based non-Boolean logic circuits
    Liu, Guanxiong
    Ahsan, Sonia
    Khitun, Alexander G.
    Lake, Roger K.
    Balandin, Alexander A.
    JOURNAL OF APPLIED PHYSICS, 2013, 114 (15)
  • [42] Quantum Amplitude Amplification Algorithm: An Explanation of Availability Bias
    Franco, Riccardo
    QUANTUM INTERACTION, PROCEEDINGS, 2009, 5494 : 84 - 96
  • [43] Quantum Bandit With Amplitude Amplification Exploration in an Adversarial Environment
    Cho, Byungjin
    Xiao, Yu
    Hui, Pan
    Dong, Daoyi
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (01) : 311 - 317
  • [44] NON-BOOLEAN DERIVED LOGICS FOR CLASSICAL-SYSTEMS
    WESTMORELAND, MD
    SCHUMACHER, BW
    PHYSICAL REVIEW A, 1993, 48 (02): : 977 - 985
  • [45] Holographic Algorithms for On-Chip, Non-Boolean Computing
    Csaba, G.
    Papp, A.
    Porod, W.
    2014 INTERNATIONAL WORKSHOP ON COMPUTATIONAL ELECTRONICS (IWCE), 2014,
  • [46] Noisy quantum amplitude estimation without noise estimation
    Tanaka, Tomoki
    Uno, Shumpei
    Onodera, Tamiya
    Yamamoto, Naoki
    Suzuki, Yohichi
    PHYSICAL REVIEW A, 2022, 105 (01)
  • [47] INTERCELLULAR AND INTRACELLULAR COMPUTATION MODELS BASED ON BOOLEAN VS NON-BOOLEAN INCONSISTENCY
    GUNJI, YP
    SADAOKA, H
    ITO, K
    BIOSYSTEMS, 1995, 35 (2-3) : 213 - 217
  • [48] Non-Boolean computing with nanomagnets for computer vision applications
    Bhanja, Sanjukta
    Karunaratne, D. K.
    Panchumarthy, Ravi
    Rajaram, Srinath
    Sarkar, Sudeep
    NATURE NANOTECHNOLOGY, 2016, 11 (02) : 177 - 183
  • [49] p-transistors and p-circuits for Boolean and Non-Boolean Logic
    Camsari, Kerem Yunus
    Faria, Rafatul
    Hassan, Orchi
    Pervaiz, Ahmed Zeeshan
    Sutton, Brian Matthew
    Datta, Supriyo
    SPINTRONICS X, 2017, 10357
  • [50] Non-Boolean Computing Based on Linear Waves and Oscillators
    Csaba, Gyorgy
    Papp, Adam
    Porod, Wolfgang
    Yeniceri, Ramazan
    ESSDERC 2015 PROCEEDINGS OF THE 45TH EUROPEAN SOLID-STATE DEVICE RESEARCH CONFERENCE, 2015, : 101 - 104