Iterative Refinement Quantum Amplitude Estimation

被引:0
|
作者
Saito, Yoshiyuki [1 ]
Lee, Xinwei [2 ]
Xie, Ningyi [2 ]
Cai, Dongsheng [3 ]
Shin, Jungpil [4 ]
Asai, Nobuyoshi [4 ]
机构
[1] Univ Aizu, Grad Sch Comp Sci & Engn, Aizu Wakamatsu, Fukushima, Japan
[2] Univ Tsukuba, Grad Sch Syst & Informat Engn, Tsukuba, Ibaraki, Japan
[3] Univ Tsukuba, Fac Engn Informat & Syst, Tsukuba, Ibaraki, Japan
[4] Univ Aizu, Sch Comp Sci & Engn, Aizu Wakamatsu, Fukushima, Japan
关键词
Quantum algorithm; Quantum amplitude estimation; Iterative refinement method;
D O I
10.1109/MCSoC60832.2023.00038
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Quantum Amplitude Estimation (QAE) is an important quantum algorithm that has the potential to quadratically speed up Monte Carlo based calculations. In this paper, we present a variant of the QAE without Phase Estimation Algorithm called Iterative Refinement QAE (IRQAE). IRQAE can refine the current estimation to a more accurate estimation iteratively, hence it can provide an estimation with arbitrary required accuracy epsilon. The key idea of IRQAE is to use a rotation gate to create a quantum state for samplings with the current estimation. Using this idea, we show that IRQAE can provide a highly accurate estimation with lower classical computational complexity and with the same quantum computational complexity compared to state-of-the-art QAEs without phase estimation using numerical experiments. We prove that the computational complexity of IRQAE of the quantum part is O(1/epsilon) and the classical one is O(log(1/epsilon)). The quantum cost gives a quadratic advantage over that of the classical Monte Carlo simulation.
引用
收藏
页码:202 / 209
页数:8
相关论文
共 50 条
  • [1] Iterative quantum amplitude estimation
    Dmitry Grinko
    Julien Gacon
    Christa Zoufal
    Stefan Woerner
    npj Quantum Information, 7
  • [2] Iterative quantum amplitude estimation
    Grinko, Dmitry
    Gacon, Julien
    Zoufal, Christa
    Woerner, Stefan
    NPJ QUANTUM INFORMATION, 2021, 7 (01)
  • [3] On the bias in iterative quantum amplitude estimation
    Miyamoto, Koichi
    EPJ QUANTUM TECHNOLOGY, 2024, 11 (01)
  • [4] Modified Iterative Quantum Amplitude Estimation is Asymptotically Optimal
    Fukuzawa, Shion
    Ho, Christopher
    Irani, Sandy
    Zion, Jasen
    2023 PROCEEDINGS OF THE SYMPOSIUM ON ALGORITHM ENGINEERING AND EXPERIMENTS, ALENEX, 2023, : 135 - 147
  • [5] Real quantum amplitude estimation
    Manzano, Alberto
    Musso, Daniele
    Leitao, Alvaro
    EPJ QUANTUM TECHNOLOGY, 2023, 10 (01)
  • [6] Real quantum amplitude estimation
    Alberto Manzano
    Daniele Musso
    Álvaro Leitao
    EPJ Quantum Technology, 2023, 10
  • [7] Variational quantum amplitude estimation
    Plekhanov, Kirill
    Rosenkranz, Matthias
    Fiorentini, Mattia
    Lubasch, Michael
    QUANTUM, 2022, 6
  • [8] Quantum computing inspired iterative refinement for semidefinite optimization
    Mohammadisiahroudi, Mohammadhossein
    Augustino, Brandon
    Sampourmahani, Pouya
    Terlaky, Tamas
    MATHEMATICAL PROGRAMMING, 2025,
  • [9] Iterative refinement for cooperative localization with maximum likelihood estimation
    Liu, Xiling
    Yan, Changhong
    Journal of Information and Computational Science, 2015, 12 (04): : 1357 - 1364
  • [10] Noisy quantum amplitude estimation without noise estimation
    Tanaka, Tomoki
    Uno, Shumpei
    Onodera, Tamiya
    Yamamoto, Naoki
    Suzuki, Yohichi
    PHYSICAL REVIEW A, 2022, 105 (01)