Iterative Refinement Quantum Amplitude Estimation

被引:0
|
作者
Saito, Yoshiyuki [1 ]
Lee, Xinwei [2 ]
Xie, Ningyi [2 ]
Cai, Dongsheng [3 ]
Shin, Jungpil [4 ]
Asai, Nobuyoshi [4 ]
机构
[1] Univ Aizu, Grad Sch Comp Sci & Engn, Aizu Wakamatsu, Fukushima, Japan
[2] Univ Tsukuba, Grad Sch Syst & Informat Engn, Tsukuba, Ibaraki, Japan
[3] Univ Tsukuba, Fac Engn Informat & Syst, Tsukuba, Ibaraki, Japan
[4] Univ Aizu, Sch Comp Sci & Engn, Aizu Wakamatsu, Fukushima, Japan
关键词
Quantum algorithm; Quantum amplitude estimation; Iterative refinement method;
D O I
10.1109/MCSoC60832.2023.00038
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Quantum Amplitude Estimation (QAE) is an important quantum algorithm that has the potential to quadratically speed up Monte Carlo based calculations. In this paper, we present a variant of the QAE without Phase Estimation Algorithm called Iterative Refinement QAE (IRQAE). IRQAE can refine the current estimation to a more accurate estimation iteratively, hence it can provide an estimation with arbitrary required accuracy epsilon. The key idea of IRQAE is to use a rotation gate to create a quantum state for samplings with the current estimation. Using this idea, we show that IRQAE can provide a highly accurate estimation with lower classical computational complexity and with the same quantum computational complexity compared to state-of-the-art QAEs without phase estimation using numerical experiments. We prove that the computational complexity of IRQAE of the quantum part is O(1/epsilon) and the classical one is O(log(1/epsilon)). The quantum cost gives a quadratic advantage over that of the classical Monte Carlo simulation.
引用
收藏
页码:202 / 209
页数:8
相关论文
共 50 条
  • [21] Iterative Pose Refinement for Object Pose Estimation Based on RGBD Data
    Huang, Shao-Kang
    Hsu, Chen-Chien
    Wang, Wei-Yen
    Lin, Cheng-Hung
    SENSORS, 2020, 20 (15) : 1 - 12
  • [22] Non-Boolean quantum amplitude amplification and quantum mean estimation
    Shyamsundar, Prasanth
    QUANTUM INFORMATION PROCESSING, 2023, 22 (12)
  • [23] Non-Boolean quantum amplitude amplification and quantum mean estimation
    Prasanth Shyamsundar
    Quantum Information Processing, 22
  • [24] Dynamic Iterative Refinement for Efficient 3D Hand Pose Estimation
    Yang, John
    Bhalgat, Yash
    Chang, Simyung
    Porikli, Fatih
    Kwak, Nojun
    2022 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2022), 2022, : 2703 - 2713
  • [25] Low complexity DOA estimation using AMP with unitary transformation and iterative refinement
    Mao, Yiwen
    Luo, Man
    Gao, Dawei
    Guo, Qinghua
    DIGITAL SIGNAL PROCESSING, 2020, 106
  • [26] Quantum algorithms for anomaly detection using amplitude estimation
    Guo, Mingchao
    Liu, Hailing
    Li, Yongmei
    Li, Wenmin
    Gao, Fei
    Qin, Sujuan
    Wen, Qiaoyan
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2022, 604
  • [27] Iterative quantum phase estimation with optimized sample complexity
    van den Berg, Ewout
    IEEE INTERNATIONAL CONFERENCE ON QUANTUM COMPUTING AND ENGINEERING (QCE20), 2020, : 1 - 10
  • [28] Adaptive measurement strategy for noisy quantum amplitude estimation with variational quantum circuits
    Oshio, Kohei
    Suzuki, Yohichi
    Wada, Kaito
    Hisanaga, Keigo
    Uno, Shumpei
    Yamamoto, Naoki
    PHYSICAL REVIEW A, 2024, 110 (06)
  • [29] The Significance of the Quantum Volume for Other Algorithms: A Case Study for Quantum Amplitude Estimation
    de Jong, Jins
    Hoek, Carmen R.
    COMPUTATIONAL SCIENCE, ICCS 2024, PT VI, 2024, 14937 : 221 - 234
  • [30] On implementation aspects of fast iterative tap amplitude and delay estimation for UMTS/WCDMA
    Burnic, Admir
    Faber, Thomas
    Scholand, Tobias
    Jung, Peter
    PROCEEDINGS OF THE SIXTH IASTED INTERNATIONAL MULTI-CONFERENCE ON WIRELESS AND OPTICAL COMMUNICATIONS, 2006, : 39 - +