Non-Boolean quantum amplitude amplification and quantum mean estimation

被引:0
|
作者
Shyamsundar, Prasanth [1 ]
机构
[1] Fermilab Quantum Inst, Fermi Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA
关键词
Quantum algorithm; Quantum speedup; Grover's algorithm; Quantum machine learning; State overlap; ALGORITHM; SEARCH;
D O I
10.1007/s11128-023-04146-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper generalizes the quantum amplitude amplification and amplitude estimation algorithms to work with non-Boolean oracles. The action of a non-Boolean oracle U-phi on an eigenstate |x > is to apply a state-dependent phase-shift phi(x). Unlike Boolean oracles, the eigenvalues exp(i phi( x)) of a non-Boolean oracle are not restricted to be +/- 1. Two new oracular algorithms based on such non-Boolean oracles are introduced. The first is the non-Boolean amplitude amplification algorithm, which preferentially amplifies the amplitudes of the eigenstates based on the value of phi(x). Starting from a given initial superposition state |psi 0 >, the basis states with lower values of cos(phi) are amplified at the expense of the basis states with higher values of cos(phi). The second algorithm is the quantum mean estimation algorithm, which uses quantum phase estimation to estimate the expectation <psi(0)|U-phi|psi(0)>, i.e., the expected value of exp(i psi(x)) for a random x sampled by making a measurement on |psi(0)>. It is shown that the quantum mean estimation algorithm offers a quadratic speedup over the corresponding classical algorithm. Both algorithms are demonstrated using simulations for a toy example. Potential applications of the algorithms are briefly discussed.
引用
收藏
页数:45
相关论文
共 50 条
  • [1] Non-Boolean quantum amplitude amplification and quantum mean estimation
    Prasanth Shyamsundar
    [J]. Quantum Information Processing, 22
  • [2] Non-Boolean probabilities and quantum measurement
    Niestegge, G
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (30): : 6031 - 6042
  • [3] The nonapproximability of non-Boolean predicates
    Engebretsen, L
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2004, 18 (01) : 114 - 129
  • [4] FINITE NON-BOOLEAN ALGEBRA
    QUACKENB.RW
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (05): : 754 - &
  • [5] Boolean and Non-Boolean Computation With Spin Devices
    Sharad, Mrigank
    Augustine, Charles
    Roy, Kaushik
    [J]. 2012 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2012,
  • [6] Quantum amplitude amplification operators: exact quantum search
    Kwon, Hyeokjea
    Bae, Joonwoo
    [J]. QUANTUM COMMUNICATIONS AND QUANTUM IMAGING XX, 2022, 12238
  • [8] The non-approximability of non-Boolean predicates
    Engebretsen, L
    [J]. APPROXIMATION, RANDOMIZATION, AND COMBINATORIAL OPTIMIZATION: ALGORITHMS AND TECHNIQUES, 2001, 2129 : 241 - 248
  • [9] Quantum amplitude-amplification operators
    Kwon, Hyeokjea
    Bae, Joonwoo
    [J]. PHYSICAL REVIEW A, 2021, 104 (06)
  • [10] Arbitrary phases in quantum amplitude amplification
    Hoyer, P
    [J]. PHYSICAL REVIEW A, 2000, 62 (05): : 052304 - 052301