Non-Boolean quantum amplitude amplification and quantum mean estimation

被引:0
|
作者
Prasanth Shyamsundar
机构
[1] Fermi National Accelerator Laboratory,Fermilab Quantum Institute
关键词
Quantum algorithm; Quantum speedup; Grover’s algorithm; Quantum machine learning; State overlap;
D O I
暂无
中图分类号
学科分类号
摘要
This paper generalizes the quantum amplitude amplification and amplitude estimation algorithms to work with non-Boolean oracles. The action of a non-Boolean oracle Uφ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_\varphi $$\end{document} on an eigenstate |x⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathinner {|{x}\rangle }$$\end{document} is to apply a state-dependent phase-shift φ(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi (x)$$\end{document}. Unlike Boolean oracles, the eigenvalues exp(iφ(x))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\exp (i\varphi (x))$$\end{document} of a non-Boolean oracle are not restricted to be ±1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pm 1$$\end{document}. Two new oracular algorithms based on such non-Boolean oracles are introduced. The first is the non-Boolean amplitude amplification algorithm, which preferentially amplifies the amplitudes of the eigenstates based on the value of φ(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi (x)$$\end{document}. Starting from a given initial superposition state |ψ0⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathinner {|{\psi _0}\rangle }$$\end{document}, the basis states with lower values of cos(φ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cos (\varphi )$$\end{document} are amplified at the expense of the basis states with higher values of cos(φ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cos (\varphi )$$\end{document}. The second algorithm is the quantum mean estimation algorithm, which uses quantum phase estimation to estimate the expectation ⟨ψ0|Uφ|ψ0⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathinner {\langle {\psi _0|U_\varphi |\psi _0}\rangle }$$\end{document}, i.e., the expected value of exp(iφ(x))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\exp (i\varphi (x))$$\end{document} for a random x sampled by making a measurement on |ψ0⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathinner {|{\psi _0}\rangle }$$\end{document}. It is shown that the quantum mean estimation algorithm offers a quadratic speedup over the corresponding classical algorithm. Both algorithms are demonstrated using simulations for a toy example. Potential applications of the algorithms are briefly discussed.
引用
收藏
相关论文
共 50 条
  • [1] Non-Boolean quantum amplitude amplification and quantum mean estimation
    Shyamsundar, Prasanth
    QUANTUM INFORMATION PROCESSING, 2023, 22 (12)
  • [2] Non-Boolean probabilities and quantum measurement
    Niestegge, G
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (30): : 6031 - 6042
  • [3] The nonapproximability of non-Boolean predicates
    Engebretsen, L
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2004, 18 (01) : 114 - 129
  • [4] FINITE NON-BOOLEAN ALGEBRA
    QUACKENB.RW
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (05): : 754 - &
  • [5] Boolean and Non-Boolean Computation With Spin Devices
    Sharad, Mrigank
    Augustine, Charles
    Roy, Kaushik
    2012 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2012,
  • [6] Quantum amplitude amplification operators: exact quantum search
    Kwon, Hyeokjea
    Bae, Joonwoo
    QUANTUM COMMUNICATIONS AND QUANTUM IMAGING XX, 2022, 12238
  • [8] The non-approximability of non-Boolean predicates
    Engebretsen, L
    APPROXIMATION, RANDOMIZATION, AND COMBINATORIAL OPTIMIZATION: ALGORITHMS AND TECHNIQUES, 2001, 2129 : 241 - 248
  • [9] Quantum amplitude-amplification operators
    Kwon, Hyeokjea
    Bae, Joonwoo
    PHYSICAL REVIEW A, 2021, 104 (06)
  • [10] Arbitrary phases in quantum amplitude amplification
    Hoyer, P
    PHYSICAL REVIEW A, 2000, 62 (05): : 052304 - 052301