Iterative Refinement Quantum Amplitude Estimation

被引:0
|
作者
Saito, Yoshiyuki [1 ]
Lee, Xinwei [2 ]
Xie, Ningyi [2 ]
Cai, Dongsheng [3 ]
Shin, Jungpil [4 ]
Asai, Nobuyoshi [4 ]
机构
[1] Univ Aizu, Grad Sch Comp Sci & Engn, Aizu Wakamatsu, Fukushima, Japan
[2] Univ Tsukuba, Grad Sch Syst & Informat Engn, Tsukuba, Ibaraki, Japan
[3] Univ Tsukuba, Fac Engn Informat & Syst, Tsukuba, Ibaraki, Japan
[4] Univ Aizu, Sch Comp Sci & Engn, Aizu Wakamatsu, Fukushima, Japan
关键词
Quantum algorithm; Quantum amplitude estimation; Iterative refinement method;
D O I
10.1109/MCSoC60832.2023.00038
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Quantum Amplitude Estimation (QAE) is an important quantum algorithm that has the potential to quadratically speed up Monte Carlo based calculations. In this paper, we present a variant of the QAE without Phase Estimation Algorithm called Iterative Refinement QAE (IRQAE). IRQAE can refine the current estimation to a more accurate estimation iteratively, hence it can provide an estimation with arbitrary required accuracy epsilon. The key idea of IRQAE is to use a rotation gate to create a quantum state for samplings with the current estimation. Using this idea, we show that IRQAE can provide a highly accurate estimation with lower classical computational complexity and with the same quantum computational complexity compared to state-of-the-art QAEs without phase estimation using numerical experiments. We prove that the computational complexity of IRQAE of the quantum part is O(1/epsilon) and the classical one is O(log(1/epsilon)). The quantum cost gives a quadratic advantage over that of the classical Monte Carlo simulation.
引用
收藏
页码:202 / 209
页数:8
相关论文
共 50 条
  • [31] On implementation aspects of fast iterative tap amplitude and delay estimation for UMTS/WCDMA
    Burnic, A.
    Faber, T.
    Scholand, T.
    Jung, P.
    IET COMMUNICATIONS, 2007, 1 (02) : 187 - 192
  • [32] 3D Monocular Robotic Ball Catching with an Iterative Trajectory Estimation Refinement
    Lippiello, Vincenzo
    Ruggiero, Fabio
    2012 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2012, : 3950 - 3955
  • [33] Coupled Iterative Refinement for 6D Multi-Object Pose Estimation
    Lipson, Lahav
    Teed, Zachary
    Goyal, Ankit
    Deng, Jia
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 6718 - 6727
  • [34] Breaking New Ground in Monocular Depth Estimation with Dynamic Iterative Refinement and Scale Consistency
    Abdusalomov, Akmalbek
    Umirzakova, Sabina
    Shukhratovich, Makhkamov Bakhtiyor
    Kakhorov, Azamat
    Cho, Young-Im
    APPLIED SCIENCES-BASEL, 2025, 15 (02):
  • [35] Dynamically adaptive real-time disparity estimation hardware using iterative refinement
    Akin, Abdulkadir
    Baz, Ipek
    Schmid, Alexandre
    Leblebici, Yusuf
    INTEGRATION-THE VLSI JOURNAL, 2014, 47 (03) : 365 - 376
  • [36] Iterative refinement for polynomial zeros
    Zhang, H
    INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED PROCESSING TECHNIQUES AND APPLICATIONS, VOLS I-IV, PROCEEDINGS, 1998, : 402 - 406
  • [37] Chebyshev acceleration of iterative refinement
    M. Arioli
    J. Scott
    Numerical Algorithms, 2014, 66 : 591 - 608
  • [38] Chebyshev acceleration of iterative refinement
    Arioli, M.
    Scott, J.
    NUMERICAL ALGORITHMS, 2014, 66 (03) : 591 - 608
  • [39] A Refinement of the KSOR Iterative Method
    Meligy, Sh A.
    Youssef, I. K.
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2022, 17 (03): : 1193 - 1199
  • [40] A modified iterative refinement scheme
    Dax, A
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2003, 25 (04): : 1199 - 1213