Iterative Refinement Quantum Amplitude Estimation

被引:0
|
作者
Saito, Yoshiyuki [1 ]
Lee, Xinwei [2 ]
Xie, Ningyi [2 ]
Cai, Dongsheng [3 ]
Shin, Jungpil [4 ]
Asai, Nobuyoshi [4 ]
机构
[1] Univ Aizu, Grad Sch Comp Sci & Engn, Aizu Wakamatsu, Fukushima, Japan
[2] Univ Tsukuba, Grad Sch Syst & Informat Engn, Tsukuba, Ibaraki, Japan
[3] Univ Tsukuba, Fac Engn Informat & Syst, Tsukuba, Ibaraki, Japan
[4] Univ Aizu, Sch Comp Sci & Engn, Aizu Wakamatsu, Fukushima, Japan
关键词
Quantum algorithm; Quantum amplitude estimation; Iterative refinement method;
D O I
10.1109/MCSoC60832.2023.00038
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Quantum Amplitude Estimation (QAE) is an important quantum algorithm that has the potential to quadratically speed up Monte Carlo based calculations. In this paper, we present a variant of the QAE without Phase Estimation Algorithm called Iterative Refinement QAE (IRQAE). IRQAE can refine the current estimation to a more accurate estimation iteratively, hence it can provide an estimation with arbitrary required accuracy epsilon. The key idea of IRQAE is to use a rotation gate to create a quantum state for samplings with the current estimation. Using this idea, we show that IRQAE can provide a highly accurate estimation with lower classical computational complexity and with the same quantum computational complexity compared to state-of-the-art QAEs without phase estimation using numerical experiments. We prove that the computational complexity of IRQAE of the quantum part is O(1/epsilon) and the classical one is O(log(1/epsilon)). The quantum cost gives a quadratic advantage over that of the classical Monte Carlo simulation.
引用
收藏
页码:202 / 209
页数:8
相关论文
共 50 条
  • [41] ITERATIVE SHAPE REFINEMENT IN AAM
    Su, Ya
    Gao, Xinbo
    INTERNATIONAL JOURNAL OF IMAGE AND GRAPHICS, 2011, 11 (01) : 137 - 151
  • [42] ITERATIVE REFINEMENT OF THE METHOD OF MOMENTS
    MIEL, G
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1987, 9 (11-12) : 1193 - 1200
  • [43] Iterative refinement of Schur decompositions
    Bujanovic, Zvonimir
    Kressner, Daniel
    Schroeder, Christian
    NUMERICAL ALGORITHMS, 2023, 92 (01) : 247 - 267
  • [44] ITERATIVE REFINEMENT IN FLOATING POINT
    MOLER, CB
    JOURNAL OF THE ACM, 1967, 14 (02) : 318 - &
  • [45] Iterative refinement for Neville elimination
    Alonso, P.
    Delgado, J.
    Gallego, R.
    Pena, J. M.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2009, 86 (02) : 341 - 353
  • [46] The Role of Precision for Iterative Refinement
    Lee, JunKyu
    Peterson, Gregory D.
    2012 SYMPOSIUM ON APPLICATION ACCELERATORS IN HIGH PERFORMANCE COMPUTING (SAAHPC), 2012, : 125 - 128
  • [47] Iterative Refinement for Linear Programming
    Gleixner, Ambros M.
    Steffy, Daniel E.
    Wolter, Kati
    INFORMS JOURNAL ON COMPUTING, 2016, 28 (03) : 449 - 464
  • [48] Iterative refinement of Schur decompositions
    Zvonimir Bujanović
    Daniel Kressner
    Christian Schröder
    Numerical Algorithms, 2023, 92 : 247 - 267
  • [49] Quantum Multi-Programming for Maximum Likelihood Amplitude Estimation
    Rao, Pooja
    Choi, Sua
    Yu, Kwangmin
    QUANTUM COMPUTING, COMMUNICATION, AND SIMULATION IV, 2024, 12911
  • [50] Amplitude estimation via maximum likelihood on noisy quantum computer
    Tomoki Tanaka
    Yohichi Suzuki
    Shumpei Uno
    Rudy Raymond
    Tamiya Onodera
    Naoki Yamamoto
    Quantum Information Processing, 2021, 20