Enhancing Performance of Dual-Gate FinFET with High-K Gate Dielectric Materials in 5 nm Technology: A Simulation Study

被引:0
|
作者
M. V. Ganeswara Rao
N. Ramanjaneyulu
Balamurali Pydi
Umamaheshwar Soma
K. Rajesh Babu
Satti Harichandra Prasad
机构
[1] Shri Vishnu Engineering College for Women,Department of ECE
[2] RGMCET,Department of Electronics and Communication Engineering
[3] Electrical and Electronics Engineering in Aditya Institute of Technology and Management,Department of Electronics and Engineering
[4] Kakatiya Institute of Technology and Science,undefined
[5] Koneru Lakshmaiah Education Foundation,undefined
[6] Aditya Engineering College,undefined
关键词
High-; gate dielectrics; Electrical behavior; Hafnium oxide; Transconductance; Early voltage;
D O I
暂无
中图分类号
学科分类号
摘要
The rapid advancement in nanoscale devices demands innovative gate dielectric materials to replace traditional Silicon dioxide. This paper investigates the electrical behavior and performance of a dual-gate FinFET employing different high-K gate dielectric materials (Silicon dioxide, Hafnium oxide, Titanium oxide) through ATLAS 2D simulation in 5 nm technology. We analyze how these high-K gate dielectric materials influence the device, focusing on performance enhancement. The study highlights various key performance parameters (ION\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_{ON}$$\end{document}, IOFF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_{OFF}$$\end{document}, gm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_{m}$$\end{document}, gds\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_{ds}$$\end{document}, RON\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{ON}$$\end{document}, TF, EV, VIL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_{IL}$$\end{document}, VIH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_{IH}$$\end{document}, NML\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$NM_{L}$$\end{document}, NMH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$NM_{H}$$\end{document}) and reveals a significant performance improvement with HfO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{HfO}_2$$\end{document} dielectric material in the proposed Dual-Gate FinFET. Achieving impressive performance parameters (ION\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_{ON}$$\end{document}: 21.59 mA, IOFF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_{OFF}$$\end{document}: 21 μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu$$\end{document}A, Maximum net Electric field: 1221290 V/cm, gm(max)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_{m(max)}$$\end{document}: 0.05187 S, gds(max)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_{ds(max)}$$\end{document}: 0.03462 S, RON(max)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{ON(max)}$$\end{document}: 25.93 kΩ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega$$\end{document}, TFmax: 5.02, Gainmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Gain_{max}$$\end{document}: 90.233, EVmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$EV_{max}$$\end{document}: 67.532 V, VIL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_{IL}$$\end{document}: 0.21 V, VIH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_{IH}$$\end{document}: 0.4 V, NML\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$NM_{L}$$\end{document}: 198 V, NMH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$NM_{H}$$\end{document}: 600 V), this paper provides valuable insights for designing high-performance devices with HfO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{HfO}_2$$\end{document} dielectric material.
引用
收藏
页码:557 / 569
页数:12
相关论文
共 50 条
  • [31] Subthreshold performance of gate engineered FinFET devices and circuit with high-k dielectrics
    Nirmal, D.
    Vijayakumar, P.
    Thomas, Divya Mary
    Jebalin, Binola K.
    Mohankumar, N.
    MICROELECTRONICS RELIABILITY, 2013, 53 (03) : 499 - 504
  • [32] Improvement of metal gate/high-k dielectric CMOSFETs characteristics by atomic layer etching of high-k gate dielectric
    Min, K. S.
    Park, C.
    Kang, C. Y.
    Park, C. S.
    Park, B. J.
    Kim, Y. W.
    Lee, B. H.
    Lee, Jack C.
    Bersuker, G.
    Kirsch, P.
    Jammy, R.
    Yeom, G. Y.
    SOLID-STATE ELECTRONICS, 2013, 82 : 82 - 85
  • [33] High-Performance 90-nm Dual-Gate nMOSFETs With Field-Plate Technology
    Fu, Jeffrey S.
    Chiu, Hsien-Chin
    Ke, Po-Yu
    Chen, Ting-Huei
    Feng, Wu-Shiung
    IEEE ELECTRON DEVICE LETTERS, 2011, 32 (03) : 291 - 293
  • [34] Advances in high-k dielectric gate materials for future ULSI devices
    Sharma, RK
    Kumar, A
    Anthony, JM
    JOM-JOURNAL OF THE MINERALS METALS & MATERIALS SOCIETY, 2001, 53 (06): : 53 - 55
  • [35] Novel MoSz Dual-Gate FET with a Highly Scaled EOT of ∼2.4 om High-k Gate Dielectric Layer for Reconfigurable Logic Gate and High-Precision Analog Synapse
    Li, Lingqi
    Zheng, Haofei
    Xiang, Heng
    Chien, Yu-Chieh
    Ang, Kah-Wee
    2023 SILICON NANOELECTRONICS WORKSHOP, SNW, 2023, : 105 - 106
  • [36] First-principles modeling of high-k gate dielectric materials
    Cho, K
    COMPUTATIONAL MATERIALS SCIENCE, 2002, 23 (1-4) : 43 - 47
  • [37] A methodology for the implementation of MOSFETs with a high-k dielectric gate material on the design of 90 nm technology circuits
    Konofaos, N.
    Alexiou, G. Ph.
    INTERNATIONAL JOURNAL OF ELECTRONICS, 2008, 95 (04) : 333 - 349
  • [38] Advances in high-k dielectric gate materials for future ULSI devices
    Rajnish K. Sharma
    Ashok Kumar
    John M. Anthony
    JOM, 2001, 53 : 53 - 55
  • [39] 32nm Gate-First High-k/Metal-Gate Technology for High Performance Low Power Applications
    Diaz, C. H.
    Goto, K.
    Huang, H. T.
    Yasuda, Yuri
    Tsao, C. P.
    Chu, T. T.
    Lu, W. T.
    Chang, Vincent
    Hou, Y. T.
    Chao, Y. S.
    Hsu, P. F.
    Chen, C. L.
    Lin, K. C.
    Ng, J. A.
    Yang, W. C.
    Chen, C. H.
    Peng, Y. H.
    Chen , C. J.
    Chen, C. C.
    Yu, M. H.
    Yeh, L. Y.
    You, K. S.
    Chen, K. S.
    Thei, K. B.
    Lee, C. H.
    Yang, S. H.
    Cheng, J. Y.
    Huang, K. T.
    Liaw, J. J.
    Ku, Y.
    Jang, S. M.
    Chuang, H.
    Liang, M. S.
    IEEE INTERNATIONAL ELECTRON DEVICES MEETING 2008, TECHNICAL DIGEST, 2008, : 629 - 632
  • [40] Implementation of high-k and metal gate materials for the 45 nm node and beyond:: gate patterning development
    Beckx, S
    Demand, M
    Locorotondo, S
    Henson, K
    Claes, M
    Paraschiv, V
    Shamiryan, D
    Jaenen, P
    Boullart, W
    Degendt, S
    Biesemans, S
    Vanhaelemeersch, S
    Vertommen, J
    Coenegrachts, B
    MICROELECTRONICS RELIABILITY, 2005, 45 (5-6) : 1007 - 1011